Skip to main content
Log in

Electronegativity-assisted optimized electronic structure of functionalized-Pt catalysts for boosting oxygen reduction kinetics

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Opportunity to harmonize aspects of oxygen reduction reaction (ORR) performance and structure, and morphology, as well as composition, is urgent for the commercialization of proton exchange membrane fuel cells. Herein, we demonstrate the design and synthesis of a functionalized-supported-Pt catalyst (Pt@HNC) featuring a hollow nitrogen-modified dodecahedral carbon substrate obtained by a stress-induced-shrink tailoring route. The as-obtained Pt@HNC catalyst possesses enhanced ORR performance, in particular with half-wave potential, mass activity (MA) and specific activity, which greatly exceed the commercial Pt/C. The density functional theory (DFT) calculations further confirmed that the charge redistribution induced by the electronegativity differences improved the electron interaction between Pt and HNC support. The optimized electronic structure of Pt weakens the reaction energy barrier on the Pt@HNC surface and adsorption of *OH species, thus cooperatively improving the intrinsic activity toward ORR. Additionally, our work indeed provides a guide for the future design of functional nanomaterials in the field of catalysts and clean energy.

Graphical abstract

摘要

质子交换膜燃料电池 (PEMFC)的商业化迫切需要协调氧还原反应(ORR)性能、结构、形貌和组成等方面。在此,我们展示了一种通过应力诱导收缩定制路线制备的以中空氮修饰的十二面体碳基底为特点负载功能化Pt催化剂 (Pt@HNC) 的设计与合成。所获得的Pt@HNC催化剂展示了增强的氧还原反应性能,特别是半波电位,质量活性和面积活性,都超过商业Pt/C。密度泛函理论 (DFT)计算进一步证明由电负性差异诱导的电荷再分布增强了Pt与HNC载体的之间的电子相互作用。Pt电子结构的优化削弱了Pt@HNC表面的反应能垒和*OH物种的吸附,从而增强Pt@HNC催化剂对氧还原反应的内在活性。此外,我们的工作确实为未来在催化剂和清洁能源领域设计功能性纳米材料提供了指导。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zhou YD, Wang N, Xing LX, Zhang XT, Zhong RY, Peng YQ, Chen Y, Ye SY, Xie XH, Du L. The emerging coupled low-PGM and PGM-free catalysts for oxygen reduction reaction. Chem Catal. 2022;3(2):100484. https://doi.org/10.1016/j.checat.2022.12.001.

    Article  CAS  Google Scholar 

  2. Wu YF, Ma JW, Huang YH. Enhancing oxygen reduction reaction of Pt-Co/C nanocatalysts via synergetic effect between Pt and Co prepared by one-pot synthesis. Rare Met. 2022;42(1):146. https://doi.org/10.1007/s12598-022-02119-6.

    Article  CAS  Google Scholar 

  3. Xie XH, He C, Li BY, He YH, Cullen DA, Wegener EC, Kropf AJ, Martinez U, Cheng YW, Engelhard MH, Bowden ME, Song M, Lemmon T, Li XHS, Nie ZM, Liu J, Myers DJ, Zelenay P, Wang GF, Wu G, Ramani V, Shao YY. Performance enhancement and degradation mechanism identification of a single-atom Co-N-C catalyst for proton exchange membrane fuel cells. Nat Catal. 2020;3(12):1044. https://doi.org/10.1038/s41929-020-00546-1.

    Article  CAS  Google Scholar 

  4. Niu HT, Xia CF, Huang L, Zaman S, Maiyalagan T, Guo W, You B, Xia BY. Rational design and synthesis of one-dimensional platinum-based nanostructures for oxygen-reduction electrocatalysis. Chin J Catal. 2022;43(6):1459. https://doi.org/10.1016/S18722067(21)63862-7.

    Article  CAS  Google Scholar 

  5. Guo XJ, Zhang Q, Li YN, Chen Y, Yang L, He HY, Xu XT, Huang HJ. Nanosized Rh grown on single-walled carbon nanohorns for efficient methanol oxidation reaction. Rare Met. 2022;41(6):2108. https://doi.org/10.1007/s12598-021-01882-2.

    Article  CAS  Google Scholar 

  6. Yang CZ, Huang HJ, He HY, Yang L, Jiang QG, Li WH. Recent advances in MXene-based nanoarchitectures as electrode materials for future energy generation and conversion applications. Coord Chem Rev. 2021;435(15):213806. https://doi.org/10.1016/j.ccr.2021.213806.

    Article  CAS  Google Scholar 

  7. Yang CZ, Jiang QG, Liu H, Yang L, He HY, Huang HJ, Li WH. Pt-on-Pd bimetallic nanodendrites stereoassembled on MXene nanosheets for use as high-efficiency electrocatalysts toward the methanol oxidation reaction. J Mater Chem A. 2021;9(27):15432. https://doi.org/10.1039/D1TA01784E.

    Article  CAS  Google Scholar 

  8. Hu GF, Shang L, Sheng T, Chen YG, Wang L. PtCo@NCs with short heteroatom active site distance for enhanced catalytic properties. Adv Funct Mater. 2020;30(28):2002281. https://doi.org/10.1002/adfm.202002281.

    Article  CAS  Google Scholar 

  9. Wang ML, Zhao J, Wang JJ, Zhang JM, Tian YZ, Yue ZZ, Li D, Hu TJ, Jia JF, Wu HS. MoO3/C-supported Pd nanoparticles as an efficient bifunctional electrocatalyst for ethanol oxidation and oxygen reduction reactions. Rare Met. 2023;42(5):1516. https://doi.org/10.1007/s12598-022-02211-x.

    Article  CAS  Google Scholar 

  10. Banham D, Ye SY. Current status and future development of catalyst materials and catalyst layers for proton exchange membrane fuel cells: an industrial perspective. ACS Energy Lett. 2017;2(3):629. https://doi.org/10.1021/acsenergylett.6b00644.

    Article  CAS  Google Scholar 

  11. Li WQ, Hu ZY, Zhang ZW, Wei P, Zhang J, Pu ZH, Zhu JW, He DP, Mu SC, van Tendeloo G. Nano-single crystal coalesced PtCu nanospheres as robust bifunctional catalyst for hydrogen evolution and oxygen reduction reactions. J Catal. 2019;375:164. https://doi.org/10.1016/j.jcat.2019.05.031.

    Article  CAS  Google Scholar 

  12. Wang XX, Swihart MT, Wu G. Achievements, challenges and perspectives on cathode catalysts in proton exchange membrane fuel cells for transportation. Nat Catal. 2019;2(7):578. https://doi.org/10.1038/s41929-019-0304-9.

    Article  CAS  Google Scholar 

  13. Kongkanand A, Mathias MF. The priority and challenge of high-power performance of low-platinum proton-exchange membrane fuel cells. J Phys Chem Lett. 2016;7(7):1127. https://doi.org/10.1021/acs.jpclett.6b00216.

    Article  CAS  PubMed  Google Scholar 

  14. Liu QQ, Liu RT, He CH, Xia CF, Guo W, Xu ZL, Xia BY. Advanced polymer-based electrolytes in zinc–air batteries. eScience. 2022;2(5):453. https://doi.org/10.1016/j.esci.2022.08.004.

    Article  Google Scholar 

  15. Jadhav HS, Bandal HA, Ramakrishna S, Kim H. Critical review, recent updates on zeolitic imidazolate framework-67 (ZIF-67) and its derivatives for electrochemical water splitting. Adv Mater. 2022;34(11):2107072. https://doi.org/10.1002/adma.202107072.

    Article  CAS  Google Scholar 

  16. Wang CC, Chen YX, Zhong MX, Feng TL, Liu Y, Feng SY, Zhang N, Shen L, Zhang K, Yang B. Hollow mesoporous carbon nanocages with Fe isolated single atomic site derived from a MOF/polymer for highly efficient electrocatalytic oxygen reduction. J Mater Chem A. 2021;9(38):22095. https://doi.org/10.1039/d1ta05039g.

    Article  CAS  Google Scholar 

  17. Liu TT, Gao WB, Wang QQ, Dou ML, Zhang ZP, Wang F. Selective loading of atomic platinum on a RuCeOx support enables stable hydrogen evolution at high current densities. Angew Chem Int Ed. 2020;59(46):20423. https://doi.org/10.1002/anie.202009612.

    Article  CAS  Google Scholar 

  18. Islam MN, Mansoor Basha AB, Kollath VO, Soleymani AP, Jankovic J, Karan K. Designing fuel cell catalyst support for superior catalytic activity and low mass-transport resistance. Nat Commun. 2022;13(1):6157. https://doi.org/10.1038/s41467-022-33892-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Guo MX, Du JC, Li H, Zhang XJ, Zhang AM, Zhao YK. New research progress on precious metal catalysts for methane combustion. Chin J Rare Met. 2021;45(9):1133. https://doi.org/10.13373/j.cnki.cjrm.XY19110015.

    Google Scholar 

  20. Zhu ZZ, Li Z, Wang JJ, Li R, Chen HY, Li YL, Chen JS, Wu R, Wei ZD. Improving NiNx and pyridinic N active sites with space-confined pyrolysis for effective CO2 electroreduction. eScience. 2022;2(4):445. https://doi.org/10.1016/j.esci.2022.05.002.

    Article  Google Scholar 

  21. Zheng SJ, Cheng H, Yu J, Bie Q, Chen JD, Wang F, Wu R, Blackwood DJ, Chen JS. Three-dimensional ordered porous N-doped carbon-supported accessible Ni-Nx active sites for efficient CO2 electroreduction. Rare Met. 2023;42(6):1800. https://doi.org/10.1007/s12598-022-02247-z.

    Article  CAS  Google Scholar 

  22. An Z, Li HQ, Zhang XM, Xu XL, Xia ZX, Yu SS, Chu WL, Wang SL, Sun GQ. Structural evolution of a PtRh nanodendrite electrocatalyst and its ultrahigh durability toward oxygen reduction reaction. ACS Catal. 2022;12(6):3302. https://doi.org/10.1021/acscatal.1c05462.

    Article  CAS  Google Scholar 

  23. Venarusso LB, Boone CV, Bettini J, Maia G. Carbon-supported metal nanodendrites as efficient, stable catalysts for the oxygen reduction reaction. J Mater Chem A. 2018;6(4):1714. https://doi.org/10.1039/C7TA08964C.

    Article  CAS  Google Scholar 

  24. Tan HB, Kim J, Lin JJ, Li CL, Alsheri SM, Ahamad T, Alhokbany N, Bando Y, Zaman M, Hossain MSA, Wang SP, Yamauchi Y. A facile surfactant-assisted synthesis of carbon-supported dendritic Pt nanoparticles with high electrocatalytic performance for the oxygen reduction reaction. Microporous Mesoporous Mater. 2019;280(15):1. https://doi.org/10.1016/j.micromeso.2019.01.020.

    Article  CAS  Google Scholar 

  25. Chakraborty I, Pradeep T. Atomically precise clusters of noble metals: emerging link between atoms and nanoparticles. Chem Rev. 2017;117(12):8208. https://doi.org/10.1021/acs.chemrev.6b00769.

    Article  CAS  PubMed  Google Scholar 

  26. Huang HJ, Wei YJ, Yang Y, Yan MM, He HY, Jiang QG, Yang XF, Zhu JX. Controllable synthesis of grain boundary-enriched Pt nanoworms decorated on graphitic carbon nanosheets for ultrahigh methanol oxidation catalytic activity. J Energy Chem. 2021;57:601. https://doi.org/10.1016/j.jechem.2020.08.063.

    Article  CAS  Google Scholar 

  27. Yao ZY, Yuan YL, Cheng T, Gao L, Sun TL, Lu YF, Zhou YG, Galindo PL, Yang ZL, Xu L, Yang H, Huang HW. Anomalous size effect of Pt ultrathin nanowires on oxygen reduction reaction. Nano Lett. 2021;21(21):9354. https://doi.org/10.1021/acs.nanolett.1c03805.

    Article  CAS  PubMed  Google Scholar 

  28. He QQ, Xu TF, Li JJ, Wang JL, Jin CQ, Chen Q, Gu XK, Wang XG, Wei JT, Duan HP, Gong YJ. Confined PdMo ultrafine nanowires in CNTs for superior oxygen reduction catalysis. Adv Energy Mater. 2022;12(26):2200849. https://doi.org/10.1002/aenm.202200849.

    Article  CAS  Google Scholar 

  29. Wu XG, Wang R, Ma F, Liu XL, Jia DL, Yang HC, Liu YP, Wang ZX, Zheng HZ, Zhang YN, Hou J, Huang JJ, Peng SL. FeCo-N encapsuled in nitrogen-doped carbon nanotubes as bifunctional electrocatalysts with a high stability for zinc air batteries. Rare Met. 2023;42(5):1526. https://doi.org/10.1007/s12598-022-02173-0.

    Article  CAS  Google Scholar 

  30. Ao X, Zhang W, Zhao B, Ding Y, Nam G, Soule L, Abdelhafiz A, Wang CD, Liu ML. Atomically dispersed Fe-N-C decorated with Pt-alloy core-shell nanoparticles for improved activity and durability towards oxygen reduction. Energy Environ Sci. 2020;13(9):3032. https://doi.org/10.1039/d0ee00832j.

    Article  CAS  Google Scholar 

  31. Zhao ZP, Guo Q, Chen FH, Zhang KW, Jiang Y. Magnetic properties and anomalous Hall effect of Mn3Sn thin films controlled by defects and ferroelectric 0.7Pb(Mg1/3Nb2/3)O3–0.3PbTiO3 substrate. Rare Met. 2021;40(10):2862. https://doi.org/10.1007/s12598-020-01673-1.

    Article  CAS  Google Scholar 

  32. Wang QM, Chen SG, Shi F, Chen K, Nie Y, Wang Y, Wu R, Li J, Zhang Y, Ding W, Li Y, Li L, Wei ZD. Structural evolution of solid Pt nanoparticles to a hollow PtFe alloy with a Pt-skin surface via space-confined pyrolysis and the nanoscale Kirkendall effect. Adv Mater. 2016;28(48):10673. https://doi.org/10.1002/adma.201603509.

    Article  CAS  PubMed  Google Scholar 

  33. Pei YR, Zhao M, Zhu YP, Yang CC, Jiang Q. VN nanoparticle-assembled hollow microspheres/N-doped carbon nanofibers: an anode material for superior potassium storage. Nano Mater Sci. 2022;4(2):104. https://doi.org/10.1016/j.nanoms.2021.06.007.

    Article  CAS  Google Scholar 

  34. Jiang RY, Tung SO, Tang Z, Li L, Ding L, Xi XG, Liu YY, Zhang L, Zhang JJ. A review of core-shell nanostructured electrocatalysts for oxygen reduction reaction. Energy Storage Mater. 2018;12:260. https://doi.org/10.1016/j.ensm.2017.11.005.

    Article  Google Scholar 

  35. Zhang N, Chen FY, Wu XQ, Wang Q, Qaseem A, Xia ZH. The activity origin of core-shell and alloy AgCu bimetallic nanoparticles for the oxygen reduction reaction. J Mater Chem A. 2017;5(15):7043. https://doi.org/10.1039/c6ta10948a.

    Article  CAS  Google Scholar 

  36. Sun LH, Li QY, Zhang SN, Xu D, Xue ZH, Su H, Lin X, Zhai GY, Gao P, Hirano SI, Chen JS, Li XH. Heterojunction-based electron donators to stabilize and activate ultrafine Pt nanoparticles for efficient hydrogen atom dissociation and gas evolution. Angew Chem Int Ed. 2021;60(49):25766. https://doi.org/10.1002/anie.202111920.

    Article  CAS  Google Scholar 

  37. Zeng XJ, Zhang HQ, Zhang XF, Zhang QQ, Chen YX, Yu RH, Moskovits M. Coupling of ultrasmall and small CoxP nanoparticles confined in porous SiO2 matrix for a robust oxygen evolution reaction. Nano Mater Sci. 2022;4(4):393. https://doi.org/10.1016/j.nanoms.2022.03.002.

    Article  CAS  Google Scholar 

  38. Zhang WJ, Feng X, Mao ZX, Li J, Wei ZD. Stably immobilizing Sub-3 nm high-entropy Pt alloy nanocrystals in porous carbon as durable oxygen reduction electrocatalyst. Adv Funct Mater. 2022;32(44):2204110. https://doi.org/10.1002/adfm.202204110.

    Article  CAS  Google Scholar 

  39. Lv RC, Ren YJ, Guo HC, Bai SL. Recent progress on thermal conductivity of graphene filled epoxy composites. Nano Mater Sci. 2022;4(3):205. https://doi.org/10.1016/j.nanoms.2021.06.001.

    Article  CAS  Google Scholar 

  40. Yin LL, Zhang S, Sun MZ, Wang SY, Huang BL, Du YP. Heteroatom-driven coordination fields altering single cerium atom sites for efficient oxygen reduction reaction. Adv Mater. 2023;35(28):2302485. https://doi.org/10.1002/adma.202302485.

    Article  CAS  Google Scholar 

  41. Yang XF, Tian L, Zhao XL, Tang H, Liu QQ, Li GS. Interfacial optimization of g-C3N4-based Z-scheme heterojunction toward synergistic enhancement of solar-driven photocatalytic oxygen evolution. Appl Catal B Environ. 2019;244(5):240. https://doi.org/10.1016/j.apcatb.2018.11.056.

    Article  CAS  Google Scholar 

  42. Ha Y, Fei B, Yan XX, Xu HB, Chen ZL, Shi LX, Fu MS, Xu W, Wu RB. Atomically dispersed Co-pyridinic N-C for superior oxygen reduction reaction. Adv Energy Mater. 2020;46(10):2002592. https://doi.org/10.1002/aenm.202002592.

    Article  CAS  Google Scholar 

  43. Long GF, Li XH, Wan K, Liang ZX, Piao JH, Tsiakaras P. Pt/CN-doped electrocatalysts: superior electrocatalytic activity for methanol oxidation reaction and mechanistic insight into interfacial enhancement. Appl Catal B Environ. 2017;203:541. https://doi.org/10.1016/j.apcatb.2016.10.055.

    Article  CAS  Google Scholar 

  44. Lu Q, Zou XH, Bu YF, Shao ZP. Structural design of supported electrocatalysts for rechargeable Zn-air batteries. Energy Storage Mater. 2023;55:166. https://doi.org/10.1016/j.ensm.2022.11.046.

    Article  Google Scholar 

  45. Khalid M, Honorato AMB, Varela H, Dai LM. Multifunctional electrocatalysts derived from conducting polymer and metal organic framework complexes. Nano Energy. 2018;45:127. https://doi.org/10.1016/j.nanoen.2017.12.045.

    Article  CAS  Google Scholar 

  46. Trogadas P, Kapil N, Angel GMA, Kühl S, Strasser P, Brett DJL, Coppens MO. Rapid synthesis of supported single metal nanoparticles and effective removal of stabilizing ligands. J Mater Chem A. 2021;9(43):24283. https://doi.org/10.1039/d1ta06032e.

    Article  CAS  Google Scholar 

  47. Chen SG, Wei ZD, Qi XQ, Dong LC, Guo YG, Wan LJ, Shao ZG, Li L. Nanostructured polyaniline-decorated Pt/C@PANI core-shell catalyst with enhanced durability and activity. J Am Chem Soc. 2012;134(32):13252. https://doi.org/10.1021/ja306501x.

    Article  CAS  PubMed  Google Scholar 

  48. Liu BW, Feng RH, Busch M, Wang SH, Wu HF, Liu P, Gu JJ, Bahadoran A, Matsumura D, Tsuji T, Zhang D, Song F, Liu QL. Synergistic hybrid electrocatalysts of platinum alloy and single-atom platinum for an efficient and durable oxygen reduction reaction. ACS Nano. 2022;16(9):14121. https://doi.org/10.1021/acsnano.2c04077.

    Article  CAS  PubMed  Google Scholar 

  49. Yan J, Zheng XJ, Wei CH, Sun ZH, Zeng K, Shen LW, Sun JW, Rümmeli MH, Yang RZ. Nitrogen-doped hollow carbon polyhedron derived from salt-encapsulated ZIF-8 for efficient oxygen reduction reaction. Carbon. 2021;171:320. https://doi.org/10.1016/j.carbon.2020.09.005.

    Article  CAS  Google Scholar 

  50. Liu J, Bak J, Roh J, Lee KS, Cho A, Han JW, Cho E. Reconstructing the coordination environment of platinum single-atom active sites for boosting oxygen reduction reaction. ACS Catal. 2021;11(1):466. https://doi.org/10.1021/acscatal.0c03330.

    Article  CAS  Google Scholar 

  51. Kresse G, Furthmuller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phy Rev B. 1996;54(16):11169. https://doi.org/10.1103/PhysRevB.54.11169.

    Article  CAS  Google Scholar 

  52. Blochl PE. Projector augmented-wave method. Phy Rev B. 1994;50(24):17953. https://doi.org/10.1103/PhysRevB.50.17953.

    Article  CAS  Google Scholar 

  53. Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77(18):3865. https://doi.org/10.1103/PhysRevLett.77.3865.

    Article  CAS  PubMed  Google Scholar 

  54. Wang MJ, Mao ZX, Liu L, Peng LS, Yang N, Deng JH, Ding W, Li J, Wei ZD. Preparation of hollow nitrogen doped carbon via stresses induced orientation contraction. Small. 2018;14(52):1804183. https://doi.org/10.1002/smll.201804183.

    Article  CAS  Google Scholar 

  55. Han AJ, Zhang J, Sun WM, Chen WX, Zhang SL, Han YH, Feng QC, Zheng LR, Gu L, Chen C, Peng Q, Wang DS, Li YD. Isolating contiguous Pt atoms and forming Pt-Zn intermetallic nanoparticles to regulate selectivity in 4-nitrophenylacetylene hydrogenation. Nat Commun. 2019;10:3787. https://doi.org/10.1038/s41467-019-11794-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hwang B, Yi SH, Chun SE. Dual-role of ZnO as a templating and activating agent to derive porous carbon from polyvinylidene chloride (PVDC) resin. Chem Eng J. 2021;422(15): 130047. https://doi.org/10.1016/j.cej.2021.130047.

    Article  CAS  Google Scholar 

  57. Wang JJ, Li Z, Zhu ZZ, Jiang JX, Li YL, Chen JJ, Niu XB, Chen JS, Wu R. Tailoring the interactions of heterostructured Ni4N/Ni3ZnC0.7 for efficient CO2 electroreduction. J Energy Chem. 2022;75:1. https://doi.org/10.1016/j.jechem.2022.07.037.

    Article  CAS  Google Scholar 

  58. Wei XX, Xiao SH, Wu R, Zhu ZZ, Zhao L, Li Z, Wang JJ, Chen JS, Wei ZD. Activating COOH* intermediate by Ni/Ni3ZnC0.7 heterostructure in porous N-doped carbon nanofibers for boosting CO2 electroreduction. Appl Catal B Environ. 2022;302:120861. https://doi.org/10.1016/j.apcatb.2021.120861.

    Article  CAS  Google Scholar 

  59. Xing GY, Zhang GY, Wang BL, Tong MM, Tian CG, Wang L, Fu HG. Strengthening oxygen reduction activity based on the cooperation of pyridinic-N and graphitic-N for atomically dispersed Fe sites. J Mater Chem A. 2023;11(17):9493. https://doi.org/10.1039/D3TA00899A.

    Article  CAS  Google Scholar 

  60. Chen F, Wu XL, Shi CY, Lin HJ, Chen JR, Shi YP, Wang SB, Duan XG. Molecular engineering toward pyrrolic N-rich M-N4 (M = Cr, Mn, Fe Co, Cu) single-atom sites for enhanced heterogeneous Fenton-like reaction. Adv Funct Mater. 2021;31(13):2007877. https://doi.org/10.1002/adfm.202007877.

    Article  CAS  Google Scholar 

  61. Kim GP, Lee M, Lee YJ, Bae S, Song HD, Song IK, Yi J. Polymer-mediated synthesis of a nitrogen-doped carbon aerogel with highly dispersed Pt nanoparticles for enhanced electrocatalytic activity. Electrochim Acta. 2016;193(1):137. https://doi.org/10.1016/j.electacta.2016.02.064.

    Article  CAS  Google Scholar 

  62. Zhou SY, Deng SJ, Wang ZC, Liao W, Chen MD, Wang QM. Pt/C Decorated with N-doped carbon layers as a highly durable electrocatalyst for the oxygen reduction reaction. Energy Fuels. 2021;35(24):20300. https://doi.org/10.1021/acs.energyfuels.1c03305.

    Article  CAS  Google Scholar 

  63. Shi WJ, Park HU, Park AH, Xue LY, Kim SK, Park GG, Kwon YU. Boosting electrocatalytic performance and durability of Pt nanoparticles by conductive MO2-x (M = Ti, Zr) supports. Appl Catal B Environ. 2023;331(15):122692. https://doi.org/10.1016/j.apcatb.2023.122692.

    Article  CAS  Google Scholar 

  64. Song ZX, Zhu YN, Liu HS, Banis MN, Zhang L, Li JJ, Doyle-Davis K, Li RY, Sham TK, Yang LJ, Young A, Botton GA, Liu LM, Sun XL. Engineering the low coordinated Pt single atom to achieve the superior electrocatalytic performance toward oxygen reduction. Small. 2020;16(43):2003096. https://doi.org/10.1002/smll.202003096.

    Article  CAS  Google Scholar 

  65. Yang ZJ, Chen CQ, Zhao YX, Wang Q, Zhao JQ, Waterhouse GIN, Qin Y, Shang L, Zhang T. Pt single atoms on CrN nanoparticles deliver outstanding activity and CO tolerance in the hydrogen oxidation reaction. Adv Mater. 2023;35(1):2208799. https://doi.org/10.1002/adma.202208799.

    Article  CAS  Google Scholar 

  66. Lin ZJ, Liu JY, Li SZ, Liang JS, Liu X, Xie LF, Lu G, Han JT, Huang YH, Li Q. Anti-corrosive SnS2/SnO2 heterostructured support for Pt nanoparticles enables remarkable oxygen reduction catalysis via interfacial enhancement. Adv Funct Mater. 2023;33(11):2211638. https://doi.org/10.1002/adfm.202211638.

    Article  CAS  Google Scholar 

  67. Wang QH, Liang HJ, Zhou JW, Wang JK, Ye Z, Zhao M, Yang HM, Song YH, Guo JJ. Boosting oxygen reduction catalysis by introducing Fe bridging atoms between Pt nanoparticles and N-doped graphene. Chem Eng J. 2023;467(1):143482. https://doi.org/10.1016/j.cej.2023.143482.

    Article  CAS  Google Scholar 

  68. Duan CX, Liang K, Zhang ZN, Li JJ, Chen T, Lv DF, Li LB, Kang L, Wang K, Hu H, Xi HX. Recent advances in the synthesis of nanoscale hierarchically porous metal-organic frameworks. Nano Mater Sci. 2022;4(4):351. https://doi.org/10.1016/j.nanoms.2021.12.003.

    Article  CAS  Google Scholar 

  69. Bai HY, Liu D, Zhou PF, Feng JX, Sui XL, Lu YH, Liu HC, Pan H. Spin evolution and flip in oxygen reduction reaction: a theoretical study of Cu(Ni)XP2S6 (X = In, Bi and Cr). J Mater Chem A. 2022;10(47):25262. https://doi.org/10.1039/D2TA07188F.

    Article  CAS  Google Scholar 

  70. Liao W, Zhou SY, Wang ZC, Long J, Chen MD, Zhou Q, Wang QM. Stress induced to shrink ZIF-8 derived hollow Fe-NC supports synergizes with Pt nanoparticles to promote oxygen reduction electrocatalysis. J Mater Chem A. 2022;10(40):21416. https://doi.org/10.1039/d2ta05643g.

    Article  CAS  Google Scholar 

  71. Li JF, Jiang KH, Bai SH, Guan CH, Wei H, Chu HB. High productivity of tartronate from electrocatalytic oxidation of high concentration glycerol through facilitating the intermediate conversion. Appl Catal B Environ. 2022;317(15):121784. https://doi.org/10.1016/j.apcatb.2022.121784.

    Article  CAS  Google Scholar 

  72. Wang XN, Zhao LM, Li XJ, Liu Y, Wang YS, Yao QF, Xie JP, Xue QZ, Yan ZF, Yuan X, Xing W. Atomic-precision Pt6 nanoclusters for enhanced hydrogen electro-oxidation. Nat Commun. 2022;13:1596. https://doi.org/10.1038/s41467-022-29276-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Yoon YS, Basumatary P, Kilic ME, Cha YL, Lee KR, Kim DJ, Konwar D. Novel GaPtMnP alloy based anodic electrocatalyst with excellent catalytic features for direct ethanol fuel cells. Adv Funct Mater. 2022;32(27):2111272. https://doi.org/10.1002/adfm.202111272.

    Article  CAS  Google Scholar 

  74. Wang K, Yang H, Wang QS, Yu JL, He Y, Wang YF, Song SQ, Wang Y. Electronic enhancement engineering by atomic Fe-N4 sites for highly-efficient PEMFCs: tailored electric-thermal field on Pt surface. Adv Energy Mater. 2023;13(14):2204371. https://doi.org/10.1002/aenm.202204371.

    Article  CAS  Google Scholar 

  75. Fan MM, Cui JW, Zhang JJ, Wu JJ, Chen SM, Song L, Wang ZX, Wang A, Vajtai R, Wu YC, Ajayan PM, Jiang JC, Sun DP. The modulating effect of N coordination on single-atom catalysts researched by Pt-N-C model through both experimental study and DFT simulation. J Mater Sci Technol. 2021;91(20):160. https://doi.org/10.1016/j.jmst.2021.01.093.

    Article  CAS  Google Scholar 

  76. Wang ZD, Yang Y, Wang XM, Lu ZX, Guo CQ, Shi Y, Tan HY, Shen LS, Cao S, Yan CF. A three-dimensional ordered honeycomb nanostructure anchored with Pt-N active sites via self-assembly of a block copolymer: an efficient electrocatalyst towards the oxygen reduction reaction in fuel cells. J Mater Chem A. 2022;22(10):12141. https://doi.org/10.1039/d2ta00752e.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Natural Science Foundation of China (Nos. 22169005, 22068009 and 22262006), the Natural Science Special Foundation of Guizhou University (Nos. 202017 Special Post A and 702775203301), the Science and Technology Support Project of Guizhou Provincial Science and Technology Department (Nos. ZK[2023]050, ZK[2023]403) and The Open Project of Institute of Dual-carbon and New Energy Technology Innovation and Development of Guizhou Province (No. DCRE-2023-06).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun-Song Chen or Qing-Mei Wang.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 12295 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Long, J., Zhuang, KW., Liao, W. et al. Electronegativity-assisted optimized electronic structure of functionalized-Pt catalysts for boosting oxygen reduction kinetics. Rare Met. 43, 1965–1976 (2024). https://doi.org/10.1007/s12598-023-02580-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02580-x

Keywords

Navigation