Micro-level prediction of outstanding claim counts based on novel mixture models and neural networks

Author:

Bücher AxelORCID,Rosenstock Alexander

Abstract

AbstractPredicting the number of outstanding claims (IBNR) is a central problem in actuarial loss reserving. Classical approaches like the Chain Ladder method rely on aggregating the available data in form of loss triangles, thereby wasting potentially useful additional claims information. A new approach based on a micro-level model for reporting delays involving neural networks is proposed. It is shown by extensive simulation experiments and an application to a large-scale real data set involving motor legal insurance claims that the new approach provides more accurate predictions in case of non-homogeneous portfolios.

Funder

ARAG SE, Düsseldorf

Heinrich-Heine-Universität Düsseldorf

Publisher

Springer Science and Business Media LLC

Subject

Statistics, Probability and Uncertainty,Economics and Econometrics,Statistics and Probability

Reference38 articles.

1. Abadi M, Agarwal A, Barham P,  Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J, Devin M, Ghemawat S, Goodfellow I, Harp A, Irving G, Isard M, Jia Y, Jozefowicz R, Kaiser L,  Kudlur M, Levenberg J, Mané D, Monga R, Moore S, Murray D, Olah C, Schuster M, Shlens J, Steiner B, Sutskever I, Talwar K, Tucker P, Vanhoucke V, Vasudevan V, Viégas F, Vinyals O, Warden P, Wattenberg M, Wicke M, Yu Y, and Zheng X (2015) TensorFlow: Large-scale machine learning on heterogeneous systems. https://www.tensorflow.org/. (Software available from tensorflow.org)

2. Allaire J, Eddelbuettel D, Golding N and Tang Y (2016) tensorflow: R interface to tensorflow. https://github.com/rstudio/tensorflow

3. Andersen EB (1970) Asymptotic properties of conditional maximum-likelihood estimators. J Roy Stat Soc 32(2):283–301

4. Antonio K, Plat R (2014) Micro-level stochastic loss reserving for general insurance. Scand Actuar J 2014(7):649–669

5. Antonio K, Godecharle E and Van Oirbeek R (2016) A multi-state approach and flexible payment distributions for micro-level reserving in general insurance. https://doi.org/10.2139/ssrn.2777467

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3