Numerical simulation of multi-field coupling in geothermal reservoir heat extraction of enhanced geothermal systems

Author:

Zeng Zhi,Shen WeijunORCID,Wang Mingcang,Li Zhiyu,Wang Xiangyang,Ding Jianghui

Abstract

AbstractThe coupled analysis of multi-field heat and mass transfer in geothermal reservoirs is a pivotal concern within the realm of geothermal rock exploitation. It holds significant implications for the assessment of thermal energy capacity and the formulation of reservoir optimization strategies in the context of geothermal rock resources. Parameters governing production, along with fracture network characteristics (such as injection well temperature, injection well pressure, fracture width, and fracture network density), exert an influence on enhanced geothermal systems (EGS) heat production. In this study, aiming to comprehend the dynamic heat generation of EGS during prolonged exploitation, a coupling of various fields including permeation within the rock formations of geothermal reservoirs and the deformation of these rocks was achieved. In this study, we formulated the governing equations for the temperature field, stress field, and permeability field within the geothermal reservoir rock. Subsequently, we conducted numerical simulations to investigate the heat transfer process in an enhanced geothermal system. We analyzed the effects of injection well temperature, injection well pressure, primary fracture width, and secondary fracture density on the temperature distribution within the reservoir and the thermal power output of the production well. The research findings underscore that ill-conceived exploitation schemes markedly accelerate the thermal breakthrough rate of production wells, resulting in a diminished rate of geothermal resource extraction from the geothermal reservoir rock. Variations in influent well temperature and secondary fracture density exhibit an approximately linear impact on the output from production wells. Crucially, injection well pressure and primary fracture width emerge as pivotal factors influencing reservoir output response, with excessive widening of primary fractures leading to premature thermal breakthrough in production wells.

Funder

National Natural Science Foundation of China

China National Petroleum Corporation

Youth Innovation Promotion Association of the Chinese Academy of Sciences

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3