Numerical simulation study on impact factors to dynamic filtration loss

Author:

Kong Cuilong,Sun Yuxue,Li Chengli,Zhao Jingyuan,Zhu Xiuyu

Abstract

AbstractDuring drilling operations, naturally, fractured formations are prone to show serious mud losses, which hinder drilling and increase nonproductive time and costs. The influencing factors of dynamic fluid loss are important for optimizing drilling parameters, reducing drilling fluid loss, and protecting oil and gas reservoirs. In this study, we simulated the dynamic filtration loss of drilling fluid during drilling under formation conditions using commercial software CMG (Computer Modelling Group). The effects of filtration time, filtrate viscosity, pressure difference, internal filter cake permeability, and external filter cake permeability on filtration loss were investigated. The simulation results showed that the permeability of the external mud cake is an important factor to control the fluid loss, and the pressure consumed by the external mud cake with low permeability can account for more than 90% of the total pressure difference. When the permeability of the external mud cake is high, the permeability of the internal mud cake also has a significant influence on the dynamic fluid loss. Under formation conditions, the dynamic fluid loss of radial fluid loss is still proportional to the filtration time and pressure difference, and inversely proportional to the filtrate viscosity of drilling fluid. Under the simulated conditions, the pressure will quickly transfer to the boundary, and the formation pressure at the same position in the formation will gradually increase, while the increase is relatively small with a constant filtration rate. The results of this paper can be used to the real site for drilling optimization. This numerical analysis method can be easily applied to filtrate loss analysis, formation damage area calculation, and other radial flow-related study.

Funder

Heilongjiang Provincial Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3