Experimental design and manufacturing of a smart control system for horizontal separator based on PID controller and integrated production model

Author:

Fadaei Mehdi,Ameri Mohammad JavadORCID,Rafiei Yousef,Asghari Morteza,Ghasemi Mehran

Abstract

AbstractDuring oil production, the reservoir pressure declines, causing changes in the hydrocarbon components. To ensure better separation of produced phases, separator dimensions should also be adjusted. It is not possible to change the dimensions of the separator during production. Therefore, to improve the separation of the phases, the level of the separator needs to be adjusted. An intelligent system is required to ensure that the liquid level is maintained at the desired level for optimal phase separation during changes in reservoir pressure. In this study, a novel correlation is presented to measure the desired liquid level using new separator pressures. For this purpose, an intelligent system was built in the laboratory and tested in different operational conditions. The intelligent system effectively maintained the desired liquid level of the separator through a new correlation technique. The system accomplished this by acquiring new separator pressure readings collected by installed sensors. This approach helped mitigate the negative effects of the slug flow regime and minimized issues such as foam formation and over-flushing of the separator. It could achieve a 99.1% separation efficiency between gas and liquid phases. This was possible during liquid and gas flow rates ranging from 0 to 2.35 and 8–17 m3/h, respectively. The system could operate under bubble, stratified, plug, and slug flow regimes. Then the intelligent model obtained from lab experiments was integrated into the production model for the southern Iranian oil field. The smart model increased oil production by 13% and prevented the separator from over-flushing in 840 days.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3