Author:
Akpan Aniefiok Sylvester,Okeke Francisca Nneka,Obiora Daniel Nnaemeka,George Nyakno Jimmy
Abstract
Abstract3D seismic volume and two well logs data labelled Bonna-6 and Bonna-8 were employed in the inversion process. The data set was simultaneously inverted to produce P- and S-impedances, density, VP − VS, and PI seismic attributes. An average “c” term value of 1.37 was obtained from the inverse of the slope of the crossplot of P-impedance versus S-impedance for Bonna-6 and Bonna-8 wells. This value was employed in the inversion process to generate the PI attribute, which aided in reducing the non-uniqueness inherent in discriminating the probable reservoir sands. Five seismic attributes slices were generated to ascertain the superiority of each attribute in delineating the probable reservoir sand. These attributes were: density, S-impedance, P-impedance, VP− VS ratio and PI. These attributes reveal low value of density (1.96 − 2.14 g/cc), P-impedance (1.8 × 104 − 2.1 × 104) ft/s*g/cc, S-impedance (9.2 × 103 − 1.1 × 104) ft/s*g/cc, VP − VS (1.65 − 1.72) and PI (4.9 × 103 − 5.1 × 104) ft/s*g/cc around the area inferred to be hydrocarbon saturated reservoir. Although the attributes considered reveals the same zone suspected to be probable hydrocarbon zone, PI gives a better discrimination when compared to other attributes. A distinctive spread and demarcation of the delineated hydrocarbon sand are observed in the PI attribute slice.
Publisher
Springer Science and Business Media LLC
Subject
General Energy,Geotechnical Engineering and Engineering Geology
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献