Skip to main content

Advertisement

Log in

Abstract

Purpose

To examine histological characteristics and differences between drusen beneath the retinal pigment epithelium (small hard drusen) located in the macula and located in the parapapillary region.

Methods

We histomorphometrically examined human eyes enucleated due to uveal melanomas or secondary angle-closure glaucoma.

Results

The study included 106 eyes (age, 62.6 ± 15.2 years) with macular drusen (n = 7 globes) or parapapillary drusen (n = 29 eyes) and 70 eyes without drusen. In all drusen, periodic-acid-Schiff-positive material was located between the RPE basal membrane and the inner collagenous layer of Bruch’s membrane (BM). Macular drusen as compared with parapapillary drusen had lower height (15.2 ± 10.1 µm versus 34.3 ± 19.8 µm; P = 0.003), while both groups did not differ significantly in basal drusen width (74.0 ± 36.3 µm versus 108.7 ± 101.0 µm; P = 0.95). Eyes with macular drusen and eyes without drusen did not differ significantly in BM thickness (2.74 ± 0.44 µm versus 2.55 ± 0.88 µm; P = 0.57) or in RPE cell density (35.4 ± 10.4 cells/480 µm versus 32.8 ± 7.5 cells/480 µm; P = 0.53), neither in the drusen region nor in the drusen vicinity, while BM thickness (4.60 ± 1.490 µm; P < 0.001) and RPE cell density (56.9 ± 26.8 cells/480 µm; P = 0.005) were higher at the parapapillary drusen. Eyes with macular drusen, eyes with parapapillary drusen, and eyes without drusen did not differ significantly in choriocapillaris density (all P > 0.10) and thickness (all P > 0.35). Limitations of the study, among others, were a small number and size of drusen examined, diseases leading to enucleation, lack of serial sections, limited resolution of light microscopy, and enucleation-related and histological preparation-associated artefacts.

Conclusions

The findings of this study, also taking into account its methodological limitations, suggest that macular drusen and parapapillary drusen shared the morphological feature of periodic-acid-Schiff-positive material between the RPE basal membrane and BM and that they did not vary significantly in choriocapillaris thickness and density. RPE cell density and BM thickness were higher in parapapillary drusen than in macular drusen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data are available upon reasonable request from the corresponding author.

References

  1. Khan KN, Mahroo OA, Khan RS et al (2016) Differentiating drusen: drusen and drusen-like appearances associated with ageing, age -related macular degeneration, inherited eye disease and other pathological processes. Prog Retin Eye Res 53:70–106

    Article  CAS  PubMed  Google Scholar 

  2. Mitchell P, Liew G, Gopinath B, Wong TY (2018) Age-related macular degeneration. Lancet 392:1147–1159

    Article  PubMed  Google Scholar 

  3. Guymer RH, Campbell TG (2023) Age-related macular degeneration. Lancet 401:1459–1472

    Article  CAS  PubMed  Google Scholar 

  4. Sarks SH (1976) Ageing and degeneration in the macular region: a clinico-pathological study. Br J Ophthalmol 60:324–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sarks SH, Van Driel D, Maxwell L (1962) Killingsworth M (1980) Softening of drusen and subretinal neovascularization. Trans Ophthalmol Soc U K 100:414–422

    Google Scholar 

  6. Sarks SH (1980) Council Lecture. Drusen and their relationship to senile macular degeneration. Aust J Ophthalmol 8:117–130

    Article  CAS  PubMed  Google Scholar 

  7. van der Schaft TL, Mooy CM, de Bruijn WC, Oron FG, Mulder PG, de Jong PT (1992) Histologic features of the early stages of age-related macular degeneration. Stat Anal Ophthalmol 99:278–286

    Article  Google Scholar 

  8. Green WR, Enger C (1993) Age-related macular degeneration histopathologic studies. The 1992 Lorenz E. Zimmerman Lect Ophthalmol 100:1519–1535

    Article  CAS  Google Scholar 

  9. Bressler NM, Silva JC, Bressler SB, Fine SL, Green WR (1994) Clinicopathologic correlation of drusen and retinal pigment epithelial abnormalities in age-related macular degeneration. Retina 14:130–142

    Article  CAS  PubMed  Google Scholar 

  10. van der Schaft TL, Mooy CM, de Bruijn WC, Bosman FT, de Jong PT (1994) Immunohistochemical light and electron microscopy of basal laminar deposit. Graefes Arch Clin Exp Ophthalmol 232:40–46

    Article  PubMed  Google Scholar 

  11. Arnold JJ, Sarks SH, Killingsworth MC, Sarks JP (1995) Reticular pseudodrusen: a risk factor in age-related maculopathy. Retina 15:183–191

    Article  CAS  PubMed  Google Scholar 

  12. Arnold JJ, Quaranta M, Soubrane G, Sarks SH, Coscas G (1997) Indocyanine green angiography of drusen. Am J Ophthalmol 124:344–356

    Article  CAS  PubMed  Google Scholar 

  13. Curcio CA, Millican CL (1999) Basal linear deposit and large drusen are specific for early age-related maculopathy. Arch Ophthalmol 117:329–339

    Article  CAS  PubMed  Google Scholar 

  14. Spraul CW, Lang GE, Grossniklaus HE, Lang GK (1999) Histologic and morphometric analysis of the choroid, Bruch’s membrane, and retinal pigment epithelium in postmortem eyes with age-related macular degeneration and histologic examination of surgically excised choroidal neovascular membranes. Surv Ophthalmol 44:S10-32

    Article  PubMed  Google Scholar 

  15. Abdelsalam A, Del Priore L, Zarbin MA (1999) Drusen in age-related macular degeneration: pathogenesis, natural course, and laser photocoagulation-induced regression. Surv Ophthalmol 44:1–29

    Article  CAS  PubMed  Google Scholar 

  16. Russell SR, Mullins RF, Schneider BL, Hageman GS (2000) Location, substructure, and composition of basal laminar drusen compared with drusen associated with aging and age-related macular degeneration. Am J Ophthalmol 129:205–214

    Article  CAS  PubMed  Google Scholar 

  17. Curcio CA, Millican CL, Bailey T, Kruth HS (2001) Accumulation of cholesterol with age in human Bruch’s membrane. Invest Ophthalmol Vis Sci 42:265–274

    CAS  PubMed  Google Scholar 

  18. Grossniklaus HE, Nickerson JM, Edelhauser HF, Bergman LAMK, Berglin L (2013) Anatomic alterations in aging and age-related diseases of the eye. Invest Ophthalmol Vis Sci 54:ORSF23–ORSF27

    Article  PubMed  PubMed Central  Google Scholar 

  19. Chen L, Messinger JD, Sloan KR, Wong J, Roorda A, Duncan JL, Curcio CA (2020) Abundance and multimodal visibility of soft drusen in early age-related macular degeneration: a clinicopathologic correlation. Retina 40:1644–1648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chen L, Messinger JD, Ferrara D, Freund KB, Curcio CA (2021) Stages of drusen-associated atrophy in age-related macular degeneration visible via histologically validated fundus autofluorescence. Ophthalmol Retina 5:730–742

    Article  PubMed  Google Scholar 

  21. Jonas JB, Jonas RA, Jonas SB, Panda-Jonas S (2023) Parapapillary drusen of the retinal pigment epithelium. Acta Ophthalmol. https://doi.org/10.1111/aos.15741

  22. Panda-Jonas S, Holbach L, Jonas JB (2021) Choriocapillaris thickness and density in axially elongated eyes. Acta Ophthalmol 99:104–110

    Article  PubMed  Google Scholar 

  23. Panda-Jonas S, Jonas JB, Jonas RA (2022) Photoreceptor density in relation to axial length and retinal location in human eyes. Sci Rep 12:21371

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jonas JB, Jonas SB, Jonas RA, Holbach L, Dai Y, Sun X, Panda-Jonas S (2012) Parapapillary atrophy: histological gamma zone and delta zone. PLoS ONE 7:e47237

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ramrattan RS, van der Schaft TL, Mooy CM, de Bruijn WC, Mulder PG, de Jong PT (1994) Morphometric analysis of Bruch’s membrane, the choriocapillaris, and the choroid in aging. Invest Ophthalmol Vis Sci 35:2857–2864

    CAS  PubMed  Google Scholar 

  26. Hageman GS, Luthert PJ, Victor Chong NH, Johnson LV, Anderson DH, Mullins RF (2001) An integrated hypothesis that considers drusen as biomarkers of immune-mediated processes at the RPE-Bruch’s membrane interface in aging and age-related macular degeneration. Prog Retin Eye Res 20:705–732

    Article  CAS  PubMed  Google Scholar 

  27. Malek G, Li CM, Guidry C, Medeiros NE, Curcio CA (2003) Apolipoprotein B in cholesterol-containing drusen and basal deposits of human eyes with age-related maculopathy. Am J Pathol 162:413–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang L, Clark ME, Crossman DK, Kojima K, Messinger JD, Mobley JA, Curcio CA (2010) Abundant lipid and protein components of drusen. PLoS ONE 5:e10329

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  29. Curcio CA, Messinger JD, Sloan KR, McGwin G, Medeiros NE, Spaide RF (2013) Subretinal drusenoid deposits in non-neovascular age-related macular degeneration: morphology, prevalence, topography, and biogenesis model. Retina 33:265–276

    Article  PubMed  Google Scholar 

  30. Pikuleva IA, Curcio CA (2014) Cholesterol in the retina: the best is yet to come. Prog Retin Eye Res 41:64–89

    Article  CAS  PubMed  Google Scholar 

  31. Tong Y, Ben Ami T, Hong S et al (2016) Hyperspectral autofluorescence imaging of drusen and retinal pigment epithelium in donor eyes with age-related macular degeneration. Retina 36:S127–S136

    Article  PubMed  PubMed Central  Google Scholar 

  32. Evers CD 3rd, Chen L, Messinger JD, Killingsworth M, Freund KB, Curcio CA (2023) Histology, dimensions, and fluorescein staining characteristics of nodular and cuticular drusen in age-related macular degeneration. Retina 43:1708–1716

    Article  CAS  PubMed  Google Scholar 

  33. Wang YX, Jiang R, Wang NL, Xu L, Jonas JB (2015) Acute peripapillary retinal pigment epithelium changes associated with acute intraocular pressure elevation. Ophthalmology 122:2022–2028

    Article  PubMed  Google Scholar 

  34. Wang YX, Panda-Jonas S, Jonas JB (2021) Optic nerve head anatomy in myopia and glaucoma, including parapapillary zones alpha, beta, gamma and delta: histology and clinical features. Prog Retin Eye Res 83:100933

    Article  PubMed  Google Scholar 

  35. Jonas JB, Jonas RA, Jonas SB, Panda-Jonas S (2023) Myopic versus glaucomatous parapapillary beta zone in myopic eyes versus eyes with secondary angle-closure glaucoma. Invest Ophthalmol Vis Sci 64:25

    Article  PubMed  PubMed Central  Google Scholar 

  36. Singh SR, Fung AT, Fraser-Bell S et al (2020) One-year outcomes of anti-vascular endothelial growth factor therapy in peripapillary choroidal neovascularization. Br J Ophthalmol 104:678–683

    Article  PubMed  Google Scholar 

  37. Stanescu N, Friehmann A, Nemet A et al (2023) Long-term outcomes of anti-vascular endothelial growth factor treatment in peripapillary choroidal neovascularisation due to age-related macular degeneration. Eye (Lond) 37:1202–1206

    Article  CAS  PubMed  Google Scholar 

  38. Rabina G, Ayalon A, Mimouni M et al (2022) Optical coherence tomography prognostic factors in age-related macular degeneration patients with peripapillary choroidal neovascularization. Ophthalmologica 245:342–349

    Article  CAS  PubMed  Google Scholar 

  39. Sohn EH, Flamme-Wiese MJ, Whitmore SS, Workalemahu G, Marneros AG, Boese EA, Kwon YH, Wang K, Abramoff MD, Tucker BA, Stone EM, Mullins RF (2019) Choriocapillaris degeneration in geographic atrophy. Am J Pathol 189:1473–1480

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

No funding was received for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jost B. Jonas.

Ethics declarations

Ethics approval and consent to participate

All procedures performed in studies involving human participants were in accordance with the ethical standards of the Medical Ethics Committee II of the Medical Faculty Mannheim of the Heidelberg University which approved the study and confirmed that the study conformed to the regulations formulated in the World Medical Association Declaration of Helsinki.

Consent for publication

The ethics committee waived the necessity of an informed written consent by the patients, since the globes had been enucleated up to 60 years before start of the present investigations, with the enucleation as part of routinely taken clinical care of the patients.

Conflict of interest

Jost B. Jonas, S. Panda-Jonas, Rahul A. Jonas: European patent EP 3 271 392, JP 2021–119187, and US 2021 0340237 A1: Agents for use in the therapeutic or prophylactic treatment of myopia or hyperopia; Patent application: European patent office number: 23170806.6: Jonas JB, Panda-Jonas S, Jonas RA, Jonas SB. Epidermal Growth Factor Inhibition in the Prophylactic or Therapeutic Treatment of Unwanted Proliferation, Migration or Metaplasia of the Retinal Pigment Epithelium.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Dres. Jost B. Jonas, Songhomitra Panda-Jonas, and Rahul A. Jonas equally contributed and share the first authorship.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jonas, J.B., Panda-Jonas, S. & Jonas, R.A. Drusen in the macula and parapapillary region. Graefes Arch Clin Exp Ophthalmol (2024). https://doi.org/10.1007/s00417-024-06438-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00417-024-06438-5

Keywords

Navigation