Echinacea purpurea extract intervention for counteracting neurochemical and behavioral changes induced by bifenthrin

Author:

Abdel-Wahhab Khaled G.ORCID,Sayed Rehab S.,EL-Sahra Doaa G.ORCID,Hassan Laila K.ORCID,Elqattan Ghada M.ORCID,Mannaa Fathia A.ORCID

Abstract

AbstractThis study was conducted to elucidate the possible protective efficiency of Echinacea purpurea hydroethanolic extract (EchEE) against bifenthrin (BIF)-induced neuro-chemical and behavioral changes in rats. Total phenolics content, reducing power and radical scavenging activity of EchEE were estimated. Four groups of adult male albino rats were used (10 rats each) as follows: 1) Control healthy rats ingested with placebo, 2) Healthy rats orally received EchEE (465 mg/kg/day), 3) Rats intoxicated with BIF (7mg/kg/day) dissolved in olive oil, and 4) Rats co-treated with EchEE (465 mg/kg/day) besides to BIF (7mg/kg/day) intoxication. After 30 days, some neuro-chemical and behavioral tests were assessed. The behavioral tests revealed that rats received BIF exhibited exploratory behavior and spatial learning impairments, memory and locomotion dysfunction, and enhanced anxiety level. Biochemical findings revealed that BIF induced-oxidative stress in the cortex and hippocampus; this was appeared from the significant rise in malondialdehyde (MDA) and nitric oxide (NO) levels, coupled with decreased catalase (CAT), superoxide dismutase (SOD), paraoxonase-1 (PON-1) activities, and reduced glutathione (GSH) level in both brain areas. Also, BIF induced a significant increase caspas-3, tumor necrosis factor alpha (TNF), and interleukin-1beta (IL-1ß) in both areas; dopamine and serotonin levels, and ACh-ase activity were markedly decreased in both areas. Interestingly, treatment of rats with EchEE in combination with BIF resulted in a significant decrease in oxidative stress damage, and modulation of the apoptotic and pro-inflammatory markers. Also, EchEE markedly improved behavioral activities and neurotransmitters level that were impaired by BIF. In conclusion, the present study clearly indicated that EchEE can attenuate brain dysfunction induced by pesticides exposure through preventing the oxidative stress. This may be attributed to its high antioxidant component.

Funder

National Research Centre Egypt

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,Neurology (clinical),Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3