Fluvoxamine Exerts Sigma-1R to Rescue Autophagy via Pom121-Mediated Nucleocytoplasmic Transport of TFEB
-
Published:2024-01-05
Issue:8
Volume:61
Page:5282-5294
-
ISSN:0893-7648
-
Container-title:Molecular Neurobiology
-
language:en
-
Short-container-title:Mol Neurobiol
Author:
Lin Chun-Yu, Wu Hsiang-En, Weng Eddie Feng-Ju, Wu Hsuan-Cheng, Su Tsung-Ping, Wang Shao-MingORCID
Abstract
AbstractExpansion of the GGGGCC-RNA repeat is a known cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), which currently have no cure. Recent studies have indicated the activation of Sigma-1 receptor plays an important role in providing neuroprotection, especially in ALS and Alzheimer’s disease. Nevertheless, the mechanisms underlying Sigma-1R activation and its effect on (G4C2)n-RNA-induced cell death remain unclear. In this study, we demonstrated that fluvoxamine is a Sigma-1R agonist that can increase chaperone activity and stabilize the protein expression of Pom121 in (G4C2)31-RNA-expressing NSC34 cells, leading to increased colocalization at the nuclear envelope. Interestingly, fluvoxamine treatment increased Pom121 protein expression without affecting transcription. In C9orf72-ALS, the nuclear translocation of TFEB autophagy factor decreased owing to nucleocytoplasmic transport defects. Our results showed that pretreatment of NSC34 cells with fluvoxamine promoted the shuttling of TFEB into the nucleus and elevated the expression of LC3-II compared to the overexpression of (G4C2)31-RNA alone. Additionally, even when used alone, fluvoxamine increases Pom121 expression and TFEB translocation. To summarize, fluvoxamine may act as a promising repurposed medicine for patients with C9orf72-ALS, as it stabilizes the nucleoporin Pom121 and promotes the translocation of TFEB in (G4C2)31-RNA-expressing NSC34 cells.
Publisher
Springer Science and Business Media LLC
Reference42 articles.
1. Gijselinck I, Van Langenhove T, van der Zee J, Sleegers K, Philtjens S, Kleinberger G, Janssens J, Bettens K, Van Cauwenberghe C, Pereson S, Engelborghs S, Sieben A, De Jonghe P, Vandenberghe R, Santens P, De Bleecker J, Maes G, Baumer V, Dillen L et al (2012) A C9orf72 promoter repeat expansion in a Flanders-Belgian cohort with disorders of the frontotemporal lobar degeneration-amyotrophic lateral sclerosis spectrum: a gene identification study. Lancet Neurol 11(1):54–65. https://doi.org/10.1016/S1474-4422(11)70261-7 2. Renton AE, Majounie E, Waite A, Simon-Sanchez J, Rollinson S, Gibbs JR, Schymick JC, Laaksovirta H, van Swieten JC, Myllykangas L, Kalimo H, Paetau A, Abramzon Y, Remes AM, Kaganovich A, Scholz SW, Duckworth J, Ding J, Harmer DW et al (2011) A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72(2):257–268. https://doi.org/10.1016/j.neuron.2011.09.010 3. Zhang K, Donnelly CJ, Haeusler AR, Grima JC, Machamer JB, Steinwald P, Daley EL, Miller SJ, Cunningham KM, Vidensky S, Gupta S, Thomas MA, Hong I, Chiu SL, Huganir RL, Ostrow LW, Matunis MJ, Wang J, Sattler R et al (2015) The C9orf72 repeat expansion disrupts nucleocytoplasmic transport. Nature 525(7567):56–61. https://doi.org/10.1038/nature14973 4. Czuppa M, Dhingra A, Zhou Q, Schludi C, Konig L, Scharf E, Farny D, Dalmia A, Tager J, Castillo-Lizardo M, Katona E, Mori K, Aumer T, Schelter F, Muller M, Carell T, Kalliokoski T, Messinger J, Rizzu P et al (2022) Drug screen in iPSC-neurons identifies nucleoside analogs as inhibitors of (G(4)C(2))(n) expression in C9orf72 ALS/FTD. Cell Rep 39(10):110913. https://doi.org/10.1016/j.celrep.2022.110913 5. Gleixner AM, Verdone BM, Otte CG, Anderson EN, Ramesh N, Shapiro OR, Gale JR, Mauna JC, Mann JR, Copley KE, Daley EL, Ortega JA, Cicardi ME, Kiskinis E, Kofler J, Pandey UB, Trotti D, Donnelly CJ (2022) NUP62 localizes to ALS/FTLD pathological assemblies and contributes to TDP-43 insolubility. Nat Commun 13(1):3380. https://doi.org/10.1038/s41467-022-31098-6
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|