Increased ATP Release and Higher Impact of Adenosine A2A Receptors on Corticostriatal Plasticity in a Rat Model of Presymptomatic Parkinson’s Disease

Author:

Gonçalves Francisco Q.,Matheus Filipe C.,Silva Henrique B.,Real Joana I.,Rial Daniel,Rodrigues Ricardo J.,Oses Jean-Pierre,Silva António C.,Gonçalves Nélio,Prediger Rui D.,Tomé Ângelo R.,Cunha Rodrigo A.ORCID

Abstract

AbstractExtracellular ATP can be a danger signal, but its role in striatal circuits afflicted in Parkinson’s disease (PD) is unclear and was now investigated. ATP was particularly released at high stimulation intensities from purified striatal nerve terminals of mice, which were endowed with different ATP-P2 receptors (P2R), although P2R antagonists did not alter corticostriatal transmission or plasticity. Instead, ATP was extracellularly catabolized into adenosine through CD73 to activate adenosine A2A receptors (A2AR) modulating corticostriatal long-term potentiation (LTP) in mice. In the presymptomatic phase of a 6-hydroxydopamine rat model of PD, ATP release from striatal nerve terminals was increased and was responsible for a greater impact of CD73 and A2AR on corticostriatal LTP. These observations identify increased ATP release and ATP-derived formation of extracellular adenosine bolstering A2AR activation as a key pathway responsible for abnormal synaptic plasticity in circuits involved in the onset of PD motor symptoms. The translation of these findings to humans prompts extending the use of A2AR antagonists from only co-adjuvants of motor control in Parkinsonian patients to neuroprotective drugs delaying the onset of motor symptoms.

Funder

“la Caixa” Foundation

Fundo Europeu de Desenvolvimento Regional

FCT - Fundação para a Ciência e a Tecnologia

Universidade de Coimbra

Publisher

Springer Science and Business Media LLC

Subject

Neuroscience (miscellaneous),Cellular and Molecular Neuroscience,Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3