Skip to main content

Advertisement

Log in

Ceftriaxone Modulates Ubiquitination of α-Amino-3-Hydroxy-5-Methyl-4-Isoxazole Propionic Acid Receptors to Improve Long-Term Potentiation Impairment Induced by Exogenous β-Amyloid in a Glutamate Transporter-1 Dependent Manner

  • Original Article
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs) are crucial for properties of synaptic plasticity, such as long-term potentiation (LTP). LTP impairment can occur early in the onset of Alzheimer’s disease (AD). The downregulation or decreased abundance of AMPAR expression in the postsynaptic membrane is closely associated with LTP impairment. Ceftriaxone (Cef) can improve LTP impairment in the early stages of AD in a mouse model. The purpose of this study was to explore the mechanism underlying this process from the aspects of AMPAR expression and ubiquitination degree. In this study, we found that β-amyloid (Aβ) treatment induced hippocampal LTP impairment and AMPAR downregulation and ubiquitination. Cef pretreatment ameliorated Aβ-induced hippocampal LTP impairment, reduced AMPAR ubiquitination, and increased AMPAR expression, especially in the plasma membrane, in Aβ-treated mice. Administration of USP46 siRNA and DHK (a specific blocker of glutamate transporter-1) significantly inhibited the above effects of Cef, suggesting a role for anti-AMPAR ubiquitination and upregulation of glutamate transporter-1 (GLT-1) in the Cef-induced improvements mentioned above. The above findings demonstrate that pretreatment with Cef effectively mitigated Aβ-induced impairment of hippocampal LTP by suppressing the ubiquitination process of AMPARs in a GLT-1-dependent manner. These results provide novel insights into the underlying mechanisms elucidating the anti-AD by Cef.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of Data and Materials

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Mattson MP (2004) Pathways towards and away from Alzheimer’s disease. Nature 430:631–639. https://doi.org/10.1038/nature02621

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297:353–356. https://doi.org/10.1126/science.1072994

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Lacor PN, Buniel MC, Furlow PW et al (2007) Abeta oligomer-induced aberrations in synapse composition, shape, and density provide a molecular basis for loss of connectivity in Alzheimer’s disease. J Neurosci 27:796–807. https://doi.org/10.1523/JNEUROSCI.3501-06.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nalivaeva NN, Belyaev ND, Kerridge C et al (2014) Amyloid-clearing proteins and their epigenetic regulation as a therapeutic target in Alzheimer’s disease. Front Aging Neurosci 6:235. https://doi.org/10.3389/fnagi.2014.00235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ramirez S (2018) Crystallizing a memory. Science 360:1182–1183. https://doi.org/10.1126/science.aau0043

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Dodart JC, Mathis C, Saura J et al (2000) Neuroanatomical abnormalities in behaviorally characterized APP(V717F) transgenic mice. Neurobiol Dis 7:71–85. https://doi.org/10.1006/nbdi.1999.0278

    Article  CAS  PubMed  Google Scholar 

  7. Sri S, Pegasiou C, Cave CA et al (2019) Emergence of synaptic and cognitive impairment in a mature-onset APP mouse model of Alzheimer’s disease. Acta Neuropathol Commun 7. https://doi.org/10.1186/s40478-019-0670-1

  8. Chakroborty S, Hill ES, Christian DT et al (2019) Reduced presynaptic vesicle stores mediate cellular and network plasticity defects in an early-stage mouse model of Alzheimer’s disease. Mol Neurodegener 14:7. https://doi.org/10.1186/s13024-019-0307-7

    Article  PubMed  PubMed Central  Google Scholar 

  9. Borgdorff AJ, Choquet D (2002) Regulation of AMPA receptor lateral movements. Nature 417:649–653. https://doi.org/10.1038/nature00780

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Bats C, Groc L, Choquet D (2007) The interaction between Stargazin and PSD-95 regulates AMPA receptor surface trafficking. Neuron 53:719–734. https://doi.org/10.1016/j.neuron.2007.01.030

    Article  CAS  PubMed  Google Scholar 

  11. Antunes G, Simoes-De-Souza FM (2018) AMPA receptor trafficking and its role in heterosynaptic plasticity. Sci Rep 8. https://doi.org/10.1038/s41598-018-28581-w

  12. Díaz-Alonso J, Nicoll RA (2021) AMPA receptor trafficking and LTP: carboxy-termini, amino-termini and TARPs. Neuropharmacology 197:108710. https://doi.org/10.1016/j.neuropharm.2021.108710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Huo Y, Khatri N, Hou Q et al (2015) The deubiquitinating enzyme USP46 regulates AMPA receptor ubiquitination and trafficking. J Neurochem 134:1067–1080. https://doi.org/10.1111/jnc.13194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang Y, Guo O, Huo Y et al (2018) Amyloid-β induces AMPA receptor ubiquitination and degradation in primary neurons and human brains of Alzheimer’s disease. J Alzheimer’s Dis 62:1789–1801. https://doi.org/10.3233/JAD-170879

    Article  Google Scholar 

  15. Lin A, Hou Q, Jarzylo L et al (2011) Nedd4-mediated AMPA receptor ubiquitination regulates receptor turnover and trafficking. J Neurochem 119:27–39. https://doi.org/10.1111/j.1471-4159.2011.07221.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Widagdo J, Guntupalli S, Jang SE et al (2017) Regulation of AMPA receptor trafficking by protein ubiquitination. Front Mol Neurosci 10:347. https://doi.org/10.3389/fnmol.2017.00347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Willard SS, Koochekpour S (2013) Glutamate, glutamate receptors, and downstream signaling pathways. Int J Biol Sci 9:948–959. https://doi.org/10.7150/ijbs.6426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65:1–105. https://doi.org/10.1016/s0301-0082(00)00067-8

    Article  CAS  PubMed  Google Scholar 

  19. Malik AR, Willnow TE (2019) Excitatory amino acid transporters in physiology and disorders of the central nervous system. Int J Mol Sci 20:5671. https://doi.org/10.3390/ijms20225671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Costa AP, Tramontina AC, Biasibetti R et al (2012) Neuroglial alterations in rats submitted to the okadaic acid-induced model of dementia. Behav Brain Res 226:420–427. https://doi.org/10.1016/j.bbr.2011.09.035

    Article  CAS  PubMed  Google Scholar 

  21. Schallier A, Smolders I, Van Dam D et al (2011) Region- and age-specific changes in glutamate transport in the AbetaPP23 mouse model for Alzheimer’s disease. J Alzheimers Dis 24:287–300. https://doi.org/10.3233/JAD-2011-101005

    Article  CAS  PubMed  Google Scholar 

  22. Jarzylo LA, Man HY (2012) Parasynaptic NMDA receptor signaling couples neuronal glutamate transporter function to AMPA receptor synaptic distribution and stability. J Neurosci 32:2552–2563. https://doi.org/10.1523/JNEUROSCI.3237-11.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Widagdo J, Chai YJ, Ridder MC et al (2015) Activity-dependent ubiquitination of GluA1 and GluA2 regulates AMPA receptor intracellular sorting and degradation. Cell Rep 10:783–795. https://doi.org/10.1016/j.celrep.2015.01.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Schwarz LA, Hall BJ, Patrick GN (2010) Activity-dependent ubiquitination of GluA1 mediates a distinct AMPA receptor endocytosis and sorting pathway. J Neurosci 30:16718–16729. https://doi.org/10.1523/JNEUROSCI.3686-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Harris LD, Jasem S, Licchesi J (2020) The ubiquitin system in Alzheimer’s disease. Adv Exp Med Biol 1233:195–221. https://doi.org/10.1007/978-3-030-38266-7_8

    Article  CAS  PubMed  Google Scholar 

  26. Rothstein JD, Patel S, Regan MR et al (2005) Beta-lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature 433:73–77. https://doi.org/10.1038/nature03180

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Fan S, Li L, Xian X et al (2021) Ceftriaxone regulates glutamate production and vesicular assembly in presynaptic terminals through GLT-1 in APP/PS1 mice. Neurobiol Learn Mem 183:107480. https://doi.org/10.1016/j.nlm.2021.107480

    Article  CAS  PubMed  Google Scholar 

  28. Gao J, Liu L, Liu C et al (2020) GLT-1 knockdown inhibits ceftriaxone-mediated improvements on cognitive deficits, and GLT-1 and xCT expression and activity in APP/PS1 AD mice. Front Aging Neurosci 12:580772. https://doi.org/10.3389/fnagi.2020.580772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fan S, Xian X, Li L et al (2018) Ceftriaxone improves cognitive function and upregulates GLT-1-related glutamate-glutamine cycle in APP/PS1 mice. J Alzheimer’s Dis 66:1731–1743. https://doi.org/10.3233/JAD-180708

    Article  CAS  Google Scholar 

  30. Mcgrath JC, Lilley E (2015) Implementing guidelines on reporting research using animals (ARRIVE etc.): new requirements for publication in BJP. Brit J Pharmacol 172:3189–3193. https://doi.org/10.1111/bph.12955

    Article  CAS  Google Scholar 

  31. Vadukul DM, Gbajumo O, Marshall KE et al (2017) Amyloidogenicity and toxicity of the reverse and scrambled variants of amyloid-β 1–42. Febs Lett 591:822–830. https://doi.org/10.1002/1873-3468.12590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Xu Q, Wen L, Wei G et al (2022) Marked response of rat ileal and colonic microbiota after the establishment of Alzheimer’s disease model with bilateral intraventricular injection of Aβ (1–42). Front Microbiol 13:819523. https://doi.org/10.3389/fmicb.2022.819523

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kim HY, Lee DK, Chung BR et al (2016) Intracerebroventricular injection of Amyloid-β peptides in normal mice to acutely induce Alzheimer-like cognitive deficits. J Vis Exp 109 https://doi.org/10.3791/53308

  34. Henley JM, Wilkinson KA (2016) Synaptic AMPA receptor composition in development, plasticity and disease. Nat Rev Neurosci 17:337–350. https://doi.org/10.1038/nrn.2016.37

    Article  CAS  PubMed  Google Scholar 

  35. Guntupalli S, Widagdo J, Anggono V (2016) Amyloid-β induced dysregulation of AMPA receptor trafficking. Neural Plast 2016:1–12. https://doi.org/10.1155/2016/3204519

    Article  CAS  Google Scholar 

  36. Hamidi N, Nozad A, Sheikhkanloui Milan H et al (2019) Effect of ceftriaxone on paired-pulse response and long-term potentiation of hippocampal dentate gyrus neurons in rats with Alzheimer-like disease. Life Sci 238:116969. https://doi.org/10.1016/j.lfs.2019.116969

    Article  CAS  PubMed  Google Scholar 

  37. Han Y, Chen L, Liu J et al (2022) A class I HDAC inhibitor rescues synaptic damage and neuron loss in APP-transfected cells and APP/PS1 mice through the GRIP1/AMPA pathway. Molecules 27:4160. https://doi.org/10.3390/molecules27134160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Martín-Belmonte A, Aguado C, Alfaro-Ruíz R et al (2020) Age-dependent shift of AMPA receptors from synapses to intracellular compartments in Alzheimer’s disease: immunocytochemical analysis of the CA1 hippocampal region in APP/PS1 transgenic mouse model. Front Aging Neurosci 12:577996. https://doi.org/10.3389/fnagi.2020.577996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Shankar GM, Li S, Mehta TH et al (2008) Amyloid-β protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nat Med 14:837–842. https://doi.org/10.1038/nm1782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Du Y, Fu M, Huang Z et al (2020) TRPV1 activation alleviates cognitive and synaptic plasticity impairments through inhibiting AMPAR endocytosis in APP23/PS45 mouse model of Alzheimer’s disease. Aging Cell 19(3):e13113. https://doi.org/10.1111/acel.13113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rodrigues EM, Scudder SL, Goo MS et al (2016) Abeta-induced synaptic alterations require the E3 ubiquitin ligase Nedd4-1. J Neurosci 36:1590–1595. https://doi.org/10.1523/JNEUROSCI.2964-15.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sheldon AL, González MI, Krizman-Genda EN et al (2008) Ubiquitination-mediated internalization and degradation of the astroglial glutamate transporter, GLT-1. Neurochem Int 53:296–308. https://doi.org/10.1016/j.neuint.2008.07.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ibáñez I, Díez-Guerra FJ, Giménez C et al (2016) Activity dependent internalization of the glutamate transporter GLT-1 mediated by β-arrestin 1 and ubiquitination. Neuropharmacology 107:376–386. https://doi.org/10.1016/j.neuropharm.2016.03.042

    Article  CAS  PubMed  Google Scholar 

  44. Gu WW, Cui X, Liu LZ et al (2021) Sulbactam improves binding property and uptake capacity of glutamate transporter-1 and decreases glutamate concentration in the CA1 region of hippocampus of global brain ischemic rats. Amino Acids 53:1649–1661. https://doi.org/10.1007/s00726-021-03088-3

    Article  CAS  PubMed  Google Scholar 

  45. Postnikova TY, Malkin SL, Zakharova MV et al (2021) Ceftriaxone treatment weakens long-term synaptic potentiation in the hippocampus of young rats. Int J Mol Sci 22. https://doi.org/10.3390/ijms22168417

Download references

Acknowledgements

The electrophysiological experiments were greatly assisted by Professor Bing-Cai Guan, for which we express our gratitude.

Funding

This research was supported by the National Natural Science Foundation of China (Grant/Award Number: 81971007) and the Natural Science Foundation of Hebei Province and Precision Medicine Joint Fund (Grant/Award Number: H2021206021).

Author information

Authors and Affiliations

Authors

Contributions

Wen-Bin Li and Rui Jiang conceived and designed the study. Bu Wang took care of animals and prepared them for experiments. Rui Jiang and Li Li performed the experiments. Xiao-Hui Xian assisted in electrophysiology experiments. Li-Zhe Liu and Li-Rong Liu analyzed the data. All authors read and approved the present version of the manuscript to be published.

Corresponding authors

Correspondence to Xiaohui Xian or Wenbin Li.

Ethics declarations

Ethics Approval

All animal experiments and the study protocols were approved by the Laboratory Animal Ethical and Welfare Committee of the Hebei Medical University, China (IACUC-Hebmu-2022013).

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (TIF 3186 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, R., Li, L., Wang, B. et al. Ceftriaxone Modulates Ubiquitination of α-Amino-3-Hydroxy-5-Methyl-4-Isoxazole Propionic Acid Receptors to Improve Long-Term Potentiation Impairment Induced by Exogenous β-Amyloid in a Glutamate Transporter-1 Dependent Manner. Mol Neurobiol (2024). https://doi.org/10.1007/s12035-024-04037-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-024-04037-3

Keywords

Navigation