Skip to main content

Advertisement

Log in

Low-Dose LPS Modulates Microglia/Macrophages Phenotypic Transformation to Amplify Rehabilitation Effects in Chronic Spinal Cord Injured (CSCI) Mice

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Spinal cord injury (SCI) results in stalled motor function recovery under the chronic phase. One of the reasons due to the presence of ongoing inflammation. Therefore, regulating the status of immune cells may help reopen the window for neural repair, which represents a potential therapeutic target. In this study, we aimed to investigate whether this could be achieved in mice with cervical 5 crush CSCI (4 W) by utilizing a concentration of 0.5 mg/kg of lipopolysaccharide (LPS) to stimulate microglia/macrophages. Additionally, the mice underwent rehabilitation training for another 6 weeks. Our results showed that systemic injection of LPS enhanced the effects of forelimb rehabilitation training, as evaluated through single pellet grasping (SPG). Electrophysiological studies revealed the restoration of cortical drive to the injured side’s forelimb muscles in the training combined with LPS group. Tract tracing studies demonstrated the reconstruction of cortical innervation to the cervical spinal cord. Furthermore, the levels of pro-inflammatory phenotype markers, such as inducible nitric oxide synthase (INOS) and CD68, decreased, while the expression of anti-inflammatory phenotype markers, including arginase 1 (ARG-1) and CD206, increased. Importantly, this phenotypic switch in microglia/macrophages was accompanied by an increase in phagocytic activity markers as indicated by BODIPY + IBA1 + staining. Collectively, our data suggests that low-dose LPS improves the effects of rehabilitation training by regulating the phenotypic transformation of microglia/macrophages in CSCI. This study provides a fresh perspective and intervention direction for the clinical treatment of chronic spinal cord injuries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

All data in the current study are available from the corresponding authors on reasonable request.

References

  1. Organization WH, Society ISC (2013) International perspectives on spinal cord injury. World Health Organization

  2. Park H-W et al (2018) Olig2-expressing mesenchymal stem cells enhance functional recovery after contusive spinal cord injury. Int J Stem Cells 11(2):177–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fouad K, Tetzlaff W (2012) Rehabilitative training and plasticity following spinal cord injury. Exp Neurol 235(1) 91–9. https://doi.org/10.1016/j.expneurol.2011.02.009

  4. Akkurt H et al (2017) The effects of upper extremity aerobic exercise in patients with spinal cord injury: a randomized controlled study. Eur J Phys Rehabil Med 53(2):219–227. https://doi.org/10.23736/s1973-9087.16.03804-1

    Article  MathSciNet  PubMed  Google Scholar 

  5. Nam KY et al (2017) Robot-assisted gait training (Lokomat) improves walking function and activity in people with spinal cord injury: a systematic review. J Neuroeng Rehabil 14(1):24. https://doi.org/10.1186/s12984-017-0232-3

    Article  MathSciNet  PubMed  PubMed Central  Google Scholar 

  6. Yıldırım MA, Öneş K, Gökşenoğlu G (2019) Early term effects of robotic assisted gait training on ambulation and functional capacity in patients with spinal cord injury. Turk J Med Sci 49(3):838–843. https://doi.org/10.3906/sag-1809-7

    Article  PubMed  PubMed Central  Google Scholar 

  7. Wang D et al (2011) Chondroitinase combined with rehabilitation promotes recovery of forelimb function in rats with chronic spinal cord injury. J Neurosci 31(25):9332–9344. https://doi.org/10.1523/jneurosci.0983-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Song G et al (2001) GeneChip analysis after acute spinal cord injury in rat. J Neurochem 79(4):804–15. https://doi.org/10.1046/j.1471-4159.2001.00626.x

  9. Di Giovanni S et al (2005) Neuronal plasticity after spinal cord injury: identification of a gene cluster driving neurite outgrowth. Faseb j 19(1):153–154. https://doi.org/10.1096/fj.04-2694fje

    Article  CAS  PubMed  Google Scholar 

  10. Dietz V, Müller R (2004) Degradation of neuronal function following a spinal cord injury: mechanisms and countermeasures. Brain 127(Pt 10):2221–2231. https://doi.org/10.1093/brain/awh255

    Article  PubMed  Google Scholar 

  11. Massey JM et al (2008) Increased chondroitin sulfate proteoglycan expression in denervated brainstem targets following spinal cord injury creates a barrier to axonal regeneration overcome by chondroitinase ABC and neurotrophin-3. Exp Neurol 209(2):426–445. https://doi.org/10.1016/j.expneurol.2007.03.029

    Article  CAS  PubMed  Google Scholar 

  12. David S, Kroner A (2011) Repertoire of microglial and macrophage responses after spinal cord injury. Nat Rev Neurosci 12(7):388–399. https://doi.org/10.1038/nrn3053

    Article  CAS  PubMed  Google Scholar 

  13. Hu X et al (2015) Microglial and macrophage polarization—new prospects for brain repair. Nat Rev Neurol 11(1):56–64. https://doi.org/10.1038/nrneurol.2014.207

    Article  PubMed  Google Scholar 

  14. Bellver-Landete V et al (2019) Microglia are an essential component of the neuroprotective scar that forms after spinal cord injury. Nat Commun 10(1):518. https://doi.org/10.1038/s41467-019-08446-0

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li C et al (2022) Temporal and spatial cellular and molecular pathological alterations with single-cell resolution in the adult spinal cord after injury. Signal Transduct Target Ther 7(1):65. https://doi.org/10.1038/s41392-022-00885-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li JL et al (2023) The polarization of microglia and infiltrated macrophages in the injured mice spinal cords: a dynamic analysis. PeerJ 11:e14929. https://doi.org/10.7717/peerj.14929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kobashi S et al (2020) Transplantation of M2-Deviated Microglia promotes recovery of motor function after spinal cord Injury in mice. Mol Ther 28(1):254–265. https://doi.org/10.1016/j.ymthe.2019.09.004

    Article  CAS  PubMed  Google Scholar 

  18. Liu W et al (2020) Exosome-shuttled miR-216a-5p from hypoxic preconditioned mesenchymal stem cells repair traumatic spinal cord injury by shifting microglial M1/M2 polarization. J Neuroinflammation 17(1):47. https://doi.org/10.1186/s12974-020-1726-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Turner RC et al (2017) Single low-dose lipopolysaccharide preconditioning: neuroprotective against axonal injury and modulates glial cells. Neuroimmunol Neuroinflamm 4:6–15. https://doi.org/10.20517/2347-8659.2016.40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Garcia-Bonilla L et al (2018) Endogenous Protection from Ischemic Brain Injury by Preconditioned monocytes. J Neurosci 38(30):6722–6736. https://doi.org/10.1523/jneurosci.0324-18.2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chen Q, Zhou L, Shine HD (2006) Expression of neurotrophin-3 promotes axonal plasticity in the acute but not chronic injured spinal cord. J Neurotrauma 23(8):1254–1260. https://doi.org/10.1089/neu.2006.23.1254

    Article  PubMed  Google Scholar 

  22. Chen Q, Smith GM, Shine HD (2008) Immune activation is required for NT-3-induced axonal plasticity in chronic spinal cord injury. Exp Neurol 209(2):497–509. https://doi.org/10.1016/j.expneurol.2007.11.025

    Article  CAS  PubMed  Google Scholar 

  23. Torres-Espín A et al (2018) Eliciting inflammation enables successful rehabilitative training in chronic spinal cord injury. Brain 141(7):1946–1962. https://doi.org/10.1093/brain/awy128

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hilton BJ et al (2013) Dorsolateral funiculus lesioning of the mouse cervical spinal cord at C4 but not at C6 results in sustained forelimb motor deficits. J Neurotrauma 30(12):1070–1083. https://doi.org/10.1089/neu.2012.2734

    Article  PubMed  Google Scholar 

  25. Shishmanova-Doseva M et al (2022) Pre- and Post-endurance Training mitigates the Rat Pilocarpine-Induced Status Epilepticus and Epileptogenesis-Associated Deleterious consequences. Int J Mol Sci 23(21). https://doi.org/10.3390/ijms232113188

  26. Gyengesi E et al (2014) Semi-automated 3D segmentation of major tracts in the rat brain: comparing DTI with standard histological methods. Brain Struct Funct 219(2):539–550. https://doi.org/10.1007/s00429-013-0516-8

    Article  PubMed  Google Scholar 

  27. Luo M et al (2021) Neuronal activity-dependent myelin repair promotes motor function recovery after contusion spinal cord injury. Brain Res Bull 166:73–81. https://doi.org/10.1016/j.brainresbull.2020.11.009

    Article  CAS  PubMed  Google Scholar 

  28. Liu K et al (2010) PTEN deletion enhances the regenerative ability of adult corticospinal neurons. Nat Neurosci 13(9):1075–1081. https://doi.org/10.1038/nn.2603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Noble LJ, Wrathall JR (1987) The blood-spinal cord barrier after injury: pattern of vascular events proximal and distal to a transection in the rat. Brain Res 424(1):177–188. https://doi.org/10.1016/0006-8993(87)91208-x

    Article  CAS  PubMed  Google Scholar 

  30. Horner PJ et al (1996) A quantitative spatial analysis of the blood-spinal cord barrier. II. Permeability after intraspinal fetal transplantation. Exp Neurol 142(2):226–243. https://doi.org/10.1006/exnr.1996.0194

    Article  CAS  PubMed  Google Scholar 

  31. Hashimoto M et al (2005) Inflammation-induced GDNF improves locomotor function after spinal cord injury. NeuroReport 16(2):99–102. https://doi.org/10.1097/00001756-200502080-00004

    Article  CAS  PubMed  Google Scholar 

  32. Hossain-Ibrahim MK et al (2006) Effects of lipopolysaccharide-induced inflammation on expression of growth-associated genes by corticospinal neurons. BMC Neurosci 7:8. https://doi.org/10.1186/1471-2202-7-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Schmidt E et al (2021) Inducing inflammation following subacute spinal cord injury in female rats: a double-edged sword to promote motor recovery. Brain Behav Immun 93:55–65. https://doi.org/10.1016/j.bbi.2020.12.013

    Article  CAS  PubMed  Google Scholar 

  34. Jayaprakash N et al (2016) Optogenetic interrogation of functional synapse formation by Corticospinal Tract Axons in the injured spinal cord. J Neurosci 36(21):5877–5890. https://doi.org/10.1523/jneurosci.4203-15.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Vallieres N et al (2006) Systemic injections of lipopolysaccharide accelerates myelin phagocytosis during wallerian degeneration in the injured mouse spinal cord. Glia 53(1):103–113. https://doi.org/10.1002/glia.20266

    Article  PubMed  Google Scholar 

  36. Phillips LL et al (2014) Time dependent integration of matrix metalloproteinases and their targeted substrates directs axonal sprouting and synaptogenesis following central nervous system injury. Neural Regen Res 9(4):362–376. https://doi.org/10.4103/1673-5374.128237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sastry PS (1985) Lipids of nervous tissue: composition and metabolism. Prog Lipid Res 24(2):69–176. https://doi.org/10.1016/0163-7827(85)90011-6

    Article  CAS  PubMed  Google Scholar 

  38. Rosenzweig ES et al (2010) Extensive spontaneous plasticity of corticospinal projections after primate spinal cord injury. Nat Neurosci 13(12):1505–1510. https://doi.org/10.1038/nn.2691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nishibe M et al (2015) Rehabilitative training promotes rapid motor recovery but delayed motor map reorganization in a rat cortical ischemic infarct model. Neurorehabil Neural Repair 29(5):472–482. https://doi.org/10.1177/1545968314543499

    Article  PubMed  Google Scholar 

  40. Wang Y et al (2023) Multimodal rehabilitation promotes axonal sprouting and functional recovery in a murine model of spinal cord injury (SCI). Neurosci Lett 795:137029. https://doi.org/10.1016/j.neulet.2022.137029

    Article  CAS  PubMed  Google Scholar 

  41. Biernaskie J, Chernenko G, Corbett D (2004) Efficacy of rehabilitative experience declines with time after focal ischemic brain injury. J Neurosci 24(5):1245–1254. https://doi.org/10.1523/jneurosci.3834-03.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Norrie BA, Nevett-Duchcherer JM, Gorassini MA (2005) Reduced functional recovery by delaying motor training after spinal cord injury. J Neurophysiol 94(1):255–264. https://doi.org/10.1152/jn.00970.2004

    Article  CAS  PubMed  Google Scholar 

  43. Mazzoleni S et al (2013) Upper limb robot-assisted therapy in chronic and subacute stroke patients: a kinematic analysis. Am J Phys Med Rehabil 92(10 Suppl 2):e26–37. https://doi.org/10.1097/PHM.0b013e3182a1e852

    Article  PubMed  Google Scholar 

  44. Varnum MM, Ikezu T (2012) The classification of microglial activation phenotypes on neurodegeneration and regeneration in Alzheimer’s disease brain. Arch Immunol Ther Exp (Warsz) 60(4):251–266. https://doi.org/10.1007/s00005-012-0181-2

    Article  CAS  PubMed  Google Scholar 

  45. Gensel JC, Zhang B (2015) Macrophage activation and its role in repair and pathology after spinal cord injury. Brain Res 1619:1–11. https://doi.org/10.1016/j.brainres.2014.12.045

    Article  CAS  PubMed  Google Scholar 

  46. Orihuela R, McPherson CA, Harry GJ (2016) Microglial M1/M2 polarization and metabolic states. Br J Pharmacol 173(4):649–665. https://doi.org/10.1111/bph.13139

    Article  CAS  PubMed  Google Scholar 

  47. Geloso MC et al (2017) The dual role of Microglia in ALS: mechanisms and therapeutic approaches. Front Aging Neurosci 9:242. https://doi.org/10.3389/fnagi.2017.00242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kigerl KA et al (2009) Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J Neurosci 29(43):13435–13444. https://doi.org/10.1523/jneurosci.3257-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Durafourt BA et al (2012) Comparison of polarization properties of human adult microglia and blood-derived macrophages. Glia 60(5):717–727. https://doi.org/10.1002/glia.22298

    Article  PubMed  Google Scholar 

  50. Healy LM et al (2016) MerTK is a Functional Regulator of myelin phagocytosis by human myeloid cells. J Immunol 196(8):3375–3384. https://doi.org/10.4049/jimmunol.1502562

    Article  CAS  PubMed  Google Scholar 

  51. Glezer I, Simard AR, Rivest S (2007) Neuroprotective role of the innate immune system by microglia. Neuroscience 147(4):867–83. https://doi.org/10.1016/j.neuroscience.2007.02.055

  52. Hanisch UK, Kettenmann H (2007) Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 10(11):1387–1394. https://doi.org/10.1038/nn1997

    Article  CAS  PubMed  Google Scholar 

  53. Yin Y et al (2003) Macrophage-derived factors stimulate optic nerve regeneration. J Neurosci 23(6):2284–2293. https://doi.org/10.1523/jneurosci.23-06-02284.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gensel JC et al (2009) Macrophages promote axon regeneration with concurrent neurotoxicity. J Neurosci 29(12):3956–3968. https://doi.org/10.1523/jneurosci.3992-08.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Anderson MA et al (2018) Required growth facilitators propel axon regeneration across complete spinal cord injury. Nature 561(7723):396–400. https://doi.org/10.1038/s41586-018-0467-6

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  56. Maier IC et al (2008) Constraint-induced movement therapy in the adult rat after unilateral corticospinal tract injury. J Neurosci 28(38):9386–9403. https://doi.org/10.1523/jneurosci.1697-08.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wahl AS et al (2014) Neuronal repair. Asynchronous therapy restores motor control by rewiring of the rat corticospinal tract after stroke. Science 344(6189):1250–1255. https://doi.org/10.1126/science.1253050

    Article  ADS  CAS  PubMed  Google Scholar 

  58. Williams PT, Kim S, Martin JH (2014) Postnatal maturation of the red nucleus motor map depends on rubrospinal connections with forelimb motor pools. J Neurosci 34(12):4432–4441. https://doi.org/10.1523/jneurosci.5332-13.2014

    Article  PubMed  PubMed Central  Google Scholar 

  59. Morris R, Whishaw IQ (2016) A proposal for a rat model of spinal cord Injury featuring the Rubrospinal Tract and its contributions to Locomotion and Skilled Hand Movement. Front Neurosci 10:5. https://doi.org/10.3389/fnins.2016.00005

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors sincerely appreciate the experimental platform support of the State Key Laboratory of Trauma, Burns and Combined Injury, Department of Research Institute of Surgery, Daping Hospital, Army Military Medical University. Botao Tan and Ying Yin were supported by the Kuanren Talents Program of the Second Affiliated Hospital of Chongqing Medical University.

Funding

This work was supported by the National Natural Science Foundation for Youth Scholar of China (grant numbers: 82002377; 82302863), the Natural Science Foundation of Chongqing (grant numbers: cstc2020jcyj-msxm0651; CSTB2023NSCQ-MSX0160), as well as the Chongqing Municipal Science and Technology Bureau and Health Commission (grant numbers: 2020MSXM108; 2023MSXM037).

Author information

Authors and Affiliations

Authors

Contributions

Supervision, funding acquisition, and resources supporting: Ce Yang, Yuan Liu, Ying Yin,Botao Tan, Lehua Yu, and Lu Pan; study design, manuscript preparation and writing: Juan Zhong and Botao Tan; manuscript review: Botao Tan and Lu Pan; animal experiments, statistical collection and analysis: Juan Zhong, Yingxi He, Qin Zhao, Haodong Luo, Qing Zhang and Yu Tian. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Lu Pan or Botao Tan.

Ethics declarations

Ethics Approval

All animal experimental procedures were approved by the Animal Experimental Ethics Committee of Chongqing Medical University [(2020)161].

Consent to Participate

Not applicable.

Consent for Publication

All the authors have read and approved the final version of the manuscript.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, J., He, Y., Zhao, Q. et al. Low-Dose LPS Modulates Microglia/Macrophages Phenotypic Transformation to Amplify Rehabilitation Effects in Chronic Spinal Cord Injured (CSCI) Mice. Mol Neurobiol (2024). https://doi.org/10.1007/s12035-024-03979-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-024-03979-y

Keywords

Navigation