Selective Reduction of Ca2+ Entry Through the Human NMDA Receptor: a Quantitative Study by Simultaneous Ca2+ and Na+ Imaging

Author:

D’Andrea TizianoORCID,Benedetti Maria CristinaORCID,Monaco LuciaORCID,Rosa AlessandroORCID,Fucile SergioORCID

Abstract

AbstractExcessive Ca2+ influx through N-methyl-D-aspartate type glutamate receptors (NMDAR) is associated with excitotoxicity and neuronal death, but the inhibition of this receptor-channel causes severe adverse effects. Thus, a selective reduction of NMDA-mediated Ca2+ entry, leaving unaltered the Na+ current, could represent a valid neuroprotective strategy. We developed a new two-fluorophore approach to efficiently assess the Ca2+ permeability of ligand-gated ion channels, including NMDARs, in different conditions. This technique was able to discriminate differential Ca2+/Na+ permeation ratio through different receptor channels, and through the same channel in different conditions. With this method, we confirmed that EU1794-4, a negative allosteric modulator of NMDARs, decreased their Ca2+ permeability. Furthermore, we measured for the first time the fractional Ca2+ current (Pf, i.e. the percentage of the total current carried by Ca2+ ions) of human NMDARs in the presence of EU1794-4, exhibiting a 40% reduction in comparison to control conditions. EU1794-4 was also able to reduce NMDA-mediated Ca2+ entry in human neurons derived from induced pluripotent stem cells. This last effect was stronger in the absence of extracellular Mg2+, but still significant in its presence, supporting the hypothesis to use NMDA-selective allosteric modulators to lower Ca2+ influx in human neurons, to prevent Ca2+-dependent excitotoxicity and consequent neurodegeneration.

Funder

Ministero della Salute

Università degli Studi di Roma La Sapienza

Publisher

Springer Science and Business Media LLC

Subject

Neuroscience (miscellaneous),Cellular and Molecular Neuroscience,Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3