Integrated Analysis of Chromatin and Transcriptomic Profiling Identifies PU.1 as a Core Regulatory Factor in Microglial Activation Induced by Chronic Cerebral Hypoperfusion

Author:

Zhang Zengyu,Jin Pengpeng,Guo Zimin,Tu Zhilan,Yang Hualan,Hu Mengting,Li Qinghua,Liu Xingdang,Li Weiwei,Hou ShuangxingORCID

Abstract

AbstractIn addition to causing white matter lesions, chronic cerebral hypoperfusion (CCH) can also cause damage to gray matter, but the underlying molecular mechanisms remain largely unknown. In order to obtain a better understanding of the relationship between gene expression and transcriptional regulation alterations, novel upstream regulators could be identified using integration analysis of the transcriptome and epigenetic approaches. Here, a bilateral common carotid artery stenosis (BCAS) model was established for inducing CCH in mice. The spatial cognitive function of mice was evaluated, and changes in cortical microglia morphology were observed. RNA-sequencing (RNA-seq) and the assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) were performed on isolated mouse cortical brain tissue. Then, a systematic joint analysis of BCAS hypoperfusion-induced cortex-specific RNA-seq and ATAC-seq was conducted in order to assess the extent of the correlation between the two, and PU.1 was found to be greatly enriched through motif analysis and transcription factor annotation. Also, the core regulatory factor PU.1 induced by BCAS hypoperfusion was shown to be colocalized with microglia. Based on the above analysis, PU.1 plays a key regulatory role in microglial activation induced by CCH. And the transcriptome and epigenomic data presented in this study can help identify potential targets for future research exploring chronic hypoperfusion-induced brain injury.

Funder

the Key Discipline Project of Shanghai Pudong Hospital

the Shanghai International Science and Technology Cooperation Fund Project

the Research and Promotion of Intervention Techniques for High-risk Groups of Stroke in China

the Beijing Emerging Health Industry Development Foundation Project

the Pudong New Area Clinical Characteristic Discipline Project

Publisher

Springer Science and Business Media LLC

Subject

Neuroscience (miscellaneous),Cellular and Molecular Neuroscience,Neurology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3