Skip to main content
Log in

The Synergistic Effect Study of Lipopolysaccharide (LPS) and A53T-α-Synuclein: Intranasal LPS Exposure on the A53T-α-Synuclein Transgenic Mouse Model of Parkinson’s Disease

  • Original Article
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Aging and interactions between genetic and environmental factors are believed to be involved the chronic development of Parkinson’s disease (PD). Among PD patients, abnormally aggregated α-synuclein is a major component of the Lewy body. Generally, the intranasal route is believed to be a gate way to the brain, and it assists environmental neurotoxins in entering the brain and is related to anosmia during early PD. The current study applies the chronic intranasal application of lipopolysaccharides (LPS) in 4-, 8-, 12- and 16-month-old A53T-α-synuclein (A53T-α-Syn) transgenic C57BL/6 mice at 2-day intervals for a 2-month period, for evaluating the behavioral, pathological, and biochemical changes and microglial activation in these animals. According to our results, after intranasal administration of LPS, A53T-α-Syn mice showed severe progressive anosmia, hypokinesia, selective dopaminergic (DAergic) neuronal losses, decreased striatal dopamine (DA) level, and enhanced α-synuclein accumulation within the substantia nigra (SN) in an age-dependent way. In addition, we found obvious NF-кB activation, Nurr1 inhibition, IL-1β, and TNF-α generation within the microglia of the SN. Conversely, the wild-type (WT) mice showed mild, whereas A53T-α-Syn mice had moderate PD-like changes among the old mice. This study demonstrated the synergistic effect of intranasal LPS and α-synuclein burden on PD development. Its underlying mechanism may be associated with Nurr1 inhibition within microglia and the amplification of CNS neuroinflammation. The mice with multiple factors, including aging, neuroinflammation, and α-synuclein mutation, have played a significant role in enhancing our understanding of how inflammation and α-synuclein mutation contribute to the neurodegeneration observed in PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Data and material for the study are available from the corresponding author on reasonable request.

References

  1. Rajan S, Kaas B (2022) Parkinson’s disease: risk factor modification and prevention. Semin Neurol 42(5):626–638. https://doi.org/10.1055/s-0042-1758780

    Article  PubMed  Google Scholar 

  2. Forloni G (2023) Oligomers and neurodegeneration: new evidence. Aging Dis. https://doi.org/10.14336/ad.2023.0327

    Article  PubMed  PubMed Central  Google Scholar 

  3. Collier TJ, Kanaan NM, Kordower JH (2011) Ageing as a primary risk factor for Parkinson’s disease: evidence from studies of non-human primates. Nat Rev Neurosci 12(6):359–366. https://doi.org/10.1038/nrn3039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rodriguez M, Rodriguez-Sabate C, Morales I, Sanchez A, Sabate M (2015) Parkinson’s disease as a result of aging. Aging Cell 14(3):293–308. https://doi.org/10.1111/acel.12312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Iba M, McDevitt RA, Kim C, Roy R, Sarantopoulou D, Tommer E, Siegars B, Sallin M et al (2022) Aging exacerbates the brain inflammatory micro-environment contributing to α-synuclein pathology and functional deficits in a mouse model of DLB/PD. Mol Neurodegener 17(1):60. https://doi.org/10.1186/s13024-022-00564-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ye H, Robak LA, Yu M, Cykowski M, Shulman JM (2023) Genetics and pathogenesis of Parkinson’s syndrome. Annu Rev Pathol 18:95–121. https://doi.org/10.1146/annurev-pathmechdis-031521-034145

    Article  CAS  PubMed  Google Scholar 

  7. Rosner S, Giladi N, Orr-Urtreger A (2008) Advances in the genetics of Parkinson’s disease. Acta Pharmacol Sin 29(1):21–34. https://doi.org/10.1111/j.1745-7254.2008.00731.x

    Article  CAS  PubMed  Google Scholar 

  8. Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, Pike B, Root H et al (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276(5321):2045–2047. https://doi.org/10.1126/science.276.5321.2045

    Article  CAS  PubMed  Google Scholar 

  9. Gao HM, Zhang F, Zhou H, Kam W, Wilson B, Hong JS (2011) Neuroinflammation and α-synuclein dysfunction potentiate each other, driving chronic progression of neurodegeneration in a mouse model of Parkinson’s disease. Environ Health Perspect 119(6):807–814. https://doi.org/10.1289/ehp.1003013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gao HM, Hong JS (2011) Gene-environment interactions: key to unraveling the mystery of Parkinson’s disease. Prog Neurobiol 94(1):1–19. https://doi.org/10.1016/j.pneurobio.2011.03.005

    Article  PubMed  PubMed Central  Google Scholar 

  11. Jacobs BM, Belete D, Bestwick J, Blauwendraat C, Bandres-Ciga S, Heilbron K, Dobson R, Nalls MA et al (2020) Parkinson’s disease determinants, prediction and gene-environment interactions in the UK Biobank. J Neurol Neurosurg Psychiatry 91(10):1046–1054. https://doi.org/10.1136/jnnp-2020-323646

    Article  PubMed  Google Scholar 

  12. Dunn AR, O’Connell KMS, Kaczorowski CC (2019) Gene-by-environment interactions in Alzheimer’s disease and Parkinson’s disease. Neurosci Biobehav Rev 103:73–80. https://doi.org/10.1016/j.neubiorev.2019.06.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Daher JP, Ying M, Banerjee R, McDonald RS, Hahn MD, Yang L, Flint Beal M, Thomas B et al (2009) Conditional transgenic mice expressing C-terminally truncated human alpha-synuclein (alphaSyn119) exhibit reduced striatal dopamine without loss of nigrostriatal pathway dopaminergic neurons. Mol Neurodegener 4:34. https://doi.org/10.1186/1750-1326-4-34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dawson TM, Ko HS, Dawson VL (2010) Genetic animal models of Parkinson’s disease. Neuron 66(5):646–661. https://doi.org/10.1016/j.neuron.2010.04.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Goldman SM (2014) Environmental toxins and Parkinson’s disease. Annu Rev Pharmacol Toxicol 54:141–164. https://doi.org/10.1146/annurev-pharmtox-011613-135937

    Article  CAS  PubMed  Google Scholar 

  16. Brown GC (2019) The endotoxin hypothesis of neurodegeneration. J Neuroinflammation 16(1):180. https://doi.org/10.1186/s12974-019-1564-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Blandini F, Armentero MT (2012) Animal models of Parkinson’s disease. Febs j 279(7):1156–1166. https://doi.org/10.1111/j.1742-4658.2012.08491.x

    Article  CAS  PubMed  Google Scholar 

  18. Haehner A, Hummel T, Wolz M, Klingelhöfer L, Fauser M, Storch A, Reichmann H (2013) Effects of rasagiline on olfactory function in patients with Parkinson’s disease. Mov Disord 28(14):2023–2027. https://doi.org/10.1002/mds.25661

    Article  CAS  PubMed  Google Scholar 

  19. Braak H, Del Tredici K, Rüb U, de Vos RA, Jansen Steur EN, Braak E (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24(2):197–211. https://doi.org/10.1016/s0197-4580(02)00065-9

    Article  PubMed  Google Scholar 

  20. Hawkes CH, Del Tredici K, Braak H (2009) Parkinson’s disease: the dual hit theory revisited. Ann N Y Acad Sci 1170:615–622. https://doi.org/10.1111/j.1749-6632.2009.04365.x

    Article  ADS  PubMed  Google Scholar 

  21. Yacoubian TA, Fang YD, Gerstenecker A, Amara A, Stover N, Ruffrage L, Collette C, Kennedy R et al (2023) Brain and systemic inflammation in de novo Parkinson’s disease. Mov Disord 38(5):743–754. https://doi.org/10.1002/mds.29363

    Article  CAS  PubMed  Google Scholar 

  22. Marogianni C, Sokratous M, Dardiotis E, Hadjigeorgiou GM, Bogdanos D, Xiromerisiou G (2020) Neurodegeneration and inflammation-an interesting interplay in Parkinson’s disease. Int J Mol Sci 21(22):8421. https://doi.org/10.3390/ijms21228421

  23. Pajares M, Rojo AI, Manda G, Boscá L, Cuadrado A (2020) Inflammation in Parkinson’s disease: mechanisms and therapeutic implications. Cells 9(7):1687. https://doi.org/10.3390/cells9071687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Huang B, Liu J, Meng T, Li Y, He D, Ran X, Chen G et al (2018) Polydatin prevents lipopolysaccharide (LPS)-induced Parkinson’s disease via regulation of the AKT/GSK3β-Nrf2/NF-κB signaling axis. Front Immunol 9:2527. https://doi.org/10.3389/fimmu.2018.02527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yang L, Zhou R, Tong Y, Chen P, Shen Y, Miao S, Liu X (2020) Neuroprotection by dihydrotestosterone in LPS-induced neuroinflammation. Neurobiol Dis 140:104814. https://doi.org/10.1016/j.nbd.2020.104814

    Article  CAS  PubMed  Google Scholar 

  26. Al-Nusaif M, Yang Y, Li S, Cheng C, Le W (2022) The role of NURR1 in metabolic abnormalities of Parkinson’s disease. Mol Neurodegener 17(1):46. https://doi.org/10.1186/s13024-022-00544-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gao H, Wang D, Jiang S, Mao J, Yang X (2021) NF‑κB is negatively associated with Nurr1 to reduce the inflammatory response in Parkinson’s disease. Mol Med Rep 23(6):396. https://doi.org/10.3892/mmr.2021.12035

  28. He Q, Yu W, Wu J, Chen C, Lou Z, Zhang Q, Zhao J, Wang J, Xiao B (2013) Intranasal LPS-mediated Parkinson’s model challenges the pathogenesis of nasal cavity and environmental toxins. PLoS ONE 8(11):e78418. https://doi.org/10.1371/journal.pone.0078418

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang S, Xiao Q, Le W (2015) Olfactory dysfunction and neurotransmitter disturbance in olfactory bulb of transgenic mice expressing human A53T mutant α-synuclein. PLoS ONE 10(3):e0119928. https://doi.org/10.1371/journal.pone.0119928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bhat PV, Anand T, Mohan Manu T, Khanum F (2018) Restorative effect of l-Dopa treatment against ochratoxin A induced neurotoxicity. Neurochem Int 118:252–263. https://doi.org/10.1016/j.neuint.2018.04.003

    Article  CAS  PubMed  Google Scholar 

  31. Dorsey ER, Okun MS, Tanner CM (2021) Bad air and Parkinson disease-the fog may be lifting. JAMA Neurol 78(7):793–795. https://doi.org/10.1001/jamaneurol.2021.0863

    Article  PubMed  Google Scholar 

  32. Sossi V, de La Fuente-Fernández R, Holden JE, Doudet DJ, McKenzie J, Stoessl AJ, Ruth TJ (2002) Increase in dopamine turnover occurs early in Parkinson’s disease: evidence from a new modeling approach to PET 18 F-fluorodopa data. J Cereb Blood Flow Metab 22(2):232–239. https://doi.org/10.1097/00004647-200202000-00011

    Article  CAS  PubMed  Google Scholar 

  33. Horowitz MP, Greenamyre JT (2010) Gene-environment interactions in Parkinson’s disease: the importance of animal modeling. Clin Pharmacol Ther 88(4):467–474. https://doi.org/10.1038/clpt.2010.138

    Article  CAS  PubMed  Google Scholar 

  34. Kline EM, Houser MC, Herrick MK, Seibler P, Klein C, West A, Tansey MG (2021) Genetic and environmental factors in Parkinson’s disease converge on immune function and inflammation. Mov Disord 36(1):25–36. https://doi.org/10.1002/mds.28411

    Article  PubMed  Google Scholar 

  35. Caggiu E, Arru G, Hosseini S, Niegowska M, Sechi G, Zarbo IR, Sechi LA (2019) Inflammation, infectious triggers, and Parkinson’s disease. Front Neurol 10:122. https://doi.org/10.3389/fneur.2019.00122

    Article  PubMed  PubMed Central  Google Scholar 

  36. Tansey MG, Wallings RL, Houser MC, Herrick MK, Keating CE, Joers V (2022) Inflammation and immune dysfunction in Parkinson disease. Nat Rev Immunol 22(11):657–673. https://doi.org/10.1038/s41577-022-00684-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Genc S, Zadeoglulari Z, Fuss SH, Genc K (2012) The adverse effects of air pollution on the nervous system. J Toxicol 2012:782462. https://doi.org/10.1155/2012/782462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kim WG, Mohney RP, Wilson B, Jeohn GH, Liu B, Hong JS (2000) Regional difference in susceptibility to lipopolysaccharide-induced neurotoxicity in the rat brain: role of microglia. J Neurosci 20(16):6309–6316. https://doi.org/10.1523/jneurosci.20-16-06309.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. He Q, Li YH, Guo SS, Wang Y, Lin W, Zhang Q, Wang J, Ma CG, Xiao BG (2016) Inhibition of Rho-kinase by Fasudil protects dopamine neurons and attenuates inflammatory response in an intranasal lipopolysaccharide-mediated Parkinson’s model. Eur J Neurosci 43(1):41–52. https://doi.org/10.1111/ejn.13132

    Article  PubMed  Google Scholar 

  40. Whitton PS (2007) Inflammation as a causative factor in the aetiology of Parkinson’s disease. Br J Pharmacol 150(8):963–976. https://doi.org/10.1038/sj.bjp.0707167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gao H, Wang D, Wang YL, Mao JP, Jiang S, Yang XL (2021) Pramipexole attenuates 6-OHDA-induced Parkinson’s disease by mediating the Nurr1/NF-κB pathway. Mol Biol Rep 48(4):3079–3087. https://doi.org/10.1007/s11033-021-06343-8

    Article  CAS  PubMed  Google Scholar 

  42. Rocha EM, De Miranda B, Sanders LH (2018) Alpha-synuclein: pathology, mitochondrial dysfunction and neuroinflammation in Parkinson’s disease. Neurobiol Dis 109(Pt B):249–257. https://doi.org/10.1016/j.nbd.2017.04.004

    Article  CAS  PubMed  Google Scholar 

  43. Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH (2010) Mechanisms underlying inflammation in neurodegeneration. Cell 140(6):918–934. https://doi.org/10.1016/j.cell.2010.02.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cheng Y, Tong Q, Yuan Y, Song X, Jiang W, Wang Y, Li W, Li Y, Zhang K (2023) α-Synuclein induces prodromal symptoms of Parkinson’s disease via activating TLR2/MyD88/NF-κB pathway in Schwann cells of vagus nerve in a rat model. J Neuroinflammation 20(1):36. https://doi.org/10.1186/s12974-023-02720-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Atik A, Stewart T, Zhang J (2016) Alpha-synuclein as a biomarker for Parkinson’s disease. Brain Pathol 26(3):410–418. https://doi.org/10.1111/bpa.12370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Niu H, Wang Q, Zhao W, Liu J, Wang D, Muhammad B, Liu X, Quan N, Zhang H, Zhang F, Wang Y, Li H, Yang R (2020) IL-1β/IL-1R1 signaling induced by intranasal lipopolysaccharide infusion regulates alpha-synuclein pathology in the olfactory bulb, substantia nigra and striatum. Brain Pathol 30(6):1102–1118. https://doi.org/10.1111/bpa.12886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Argyrofthalmidou M, Spathis AD, Maniati M, Poula A, Katsianou MA, Sotiriou E, Manousaki M, Perier C, Papapanagiotou I, Papadopoulou-Daifoti Z, Pitychoutis PM, Alexakos P, Vila M, Stefanis L, Vassilatis DK (2021) Nurr1 repression mediates cardinal features of Parkinson’s disease in α-synuclein transgenic mice. Hum Mol Genet 30(16):1469–1483. https://doi.org/10.1093/hmg/ddab118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jia C, Qi H, Cheng C, Wu X, Yang Z, Cai H, Chen S, Le W (2020) α-Synuclein negatively regulates Nurr1 expression through NF-κB-Related mechanism. Front Mol Neurosci 13:64. https://doi.org/10.3389/fnmol.2020.00064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lin X, Parisiadou L, Sgobio C, Liu G, Yu J, Sun L, Shim H, Gu XL, Luo J, Long CX, Ding J, Mateo Y, Sullivan PH, Wu LG, Goldstein DS, Lovinger D, Cai H (2012) Conditional expression of Parkinson’s disease-related mutant α-synuclein in the midbrain dopaminergic neurons causes progressive neurodegeneration and degradation of transcription factor nuclear receptor related 1. J Neurosci 32(27):9248–9264. https://doi.org/10.1523/jneurosci.1731-12.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Decressac M, Kadkhodaei B, Mattsson B, Laguna A, Perlmann T, Björklund A (2012) α-Synuclein-induced down-regulation of Nurr1 disrupts GDNF signaling in nigral dopamine neurons. Sci Transl Med 4(163):163ra156. https://doi.org/10.1126/scitranslmed.3004676

    Article  CAS  PubMed  Google Scholar 

  51. Bobela W, Aebischer P, Schneider BL (2015) Αlpha-synuclein as a mediator in the interplay between aging and Parkinson’s disease. Biomolecules 5(4):2675–2700. https://doi.org/10.3390/biom5042675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr. Shun Yu from Xuanwu Hospital of the Capital University of Medical Sciences, Beijing, China, for kindly providing the human α-synuclein antibody for immunofluorescence.

Funding

This work was supported by grants from the National Foundation of Natural Science of China (81501085); Clinical Research Program of Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine (JYLJ202003); Project of Biobank from Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine (YBKB202120); Transverse Research Project of Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine (JYHX202117002); and Health Management Project of Shanghai Rehabilitation Medical Association (2022KJCX008). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the study: QH and CW. Performed the study: ZSZ (allocated experiments), QH, JW, TFM, and DM (performed the behavior tests and collected samples); QH and LW (prepared samples, PK treatment and HPLC); QH, MXZ, and ZL (performed immunofluorescence and Western blot); and YJC (collected data). Revised the paper for intellectual content: CW. Data statistics and analysis: QH and JW. Wrote the paper: QH, ZSZ, and JW. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Jianren Liu or Wei Chen.

Ethics declarations

Ethics Approval

This study was approved by the Ethics Committee of Shanghai Ninth People’s Hospital of Shanghai Jiao Tong University School of Medicine, Shanghai, China. All experiments were conducted in accordance with the guidelines of the International Council for Laboratory Animal Science.

Consent for Publication

All authors have reviewed the final manuscript and have given their consent for publication.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Q., Zhang, S., Wang, J. et al. The Synergistic Effect Study of Lipopolysaccharide (LPS) and A53T-α-Synuclein: Intranasal LPS Exposure on the A53T-α-Synuclein Transgenic Mouse Model of Parkinson’s Disease. Mol Neurobiol (2024). https://doi.org/10.1007/s12035-024-04020-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-024-04020-y

Keywords

Navigation