Skip to main content
Log in

Exosomes Derived from Meningitic Escherichia coli–Infected Brain Microvascular Endothelial Cells Facilitate Astrocyte Activation

  • Research
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Numerous studies have shown that exosomes play a regulatory role in a variety of biological processes as well as in disease development and progression. However, exosome-mediated intercellular communication between brain microvascular endothelial cells (BMECs) and astrocytes during meningitic Escherichia coli (E. coli)–induced neuroinflammation remains largely unknown. Here, by using in vivo and in vitro models, we demonstrate that exosomes derived from meningitic E. coli–infected BMECs can activate the inflammatory response of astrocytes. A label-free quantitation approach coupled with LC-MS/MS was used to compare the exosome proteomic profiles of human BMECs (hBMECs) in response to meningitic E. coli infection. A total of 57 proteins exhibited significant differences in BMEC-derived exosomes during the infection. Among these proteins, growth differentiation factor 15 (GDF15) was significantly increased in BMEC-derived exosomes during the infection, which triggered the Erk1/2 signaling pathway and promoted the activation of astrocytes. The identification and characterization of exosome protein profiles in BMECs during meningitic E. coli infection will contribute to the understanding of the underlying pathogenic mechanisms from the perspective of intercellular communication between BMECs and astrocytes, and provide new insights for future prevention and treatment of E. coli meningitis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed during the current study are available from the corresponding authors on reasonable request. The datasets generated and analyzed during the current study are available via the PRIDE database under identifier PXD021064.

Abbreviations

BBB:

blood–brain barrier

BMECs:

brain microvascular endothelial cells

BP:

biological process

CC:

cellular component

CNS:

central nervous system

DAPI:

4′,6-diamidino-2-phenylindole

E. coli :

Escherichia coli

FBS:

fetal bovine serum

FITC:

fluorescein isothiocyanate

GDF15:

growth differentiation factor 15

GFAP:

glial fibrillary acidic protein

GO:

Gene Ontology

hBMECs:

human brain microvascular endothelial cells

KEGG:

Kyoto Encyclopedia of Genes and Genomes

MF:

molecular function

MS:

mass spectrometry

NTA:

nanoparticle tracking analysis

PBS:

phosphate-buffered saline

SD:

standard deviation

TEM:

transmission electron microscopy

References

  1. van de Beek D, Brouwer M, Hasbun R, Koedel U, Whitney CG, Wijdicks E (2016) Community-acquired bacterial meningitis. Nat Rev Dis Primers 2:16074. https://doi.org/10.1038/nrdp.2016.74

    Article  PubMed  Google Scholar 

  2. Kim KS (2016) Human meningitis-associated Escherichia coli. EcoSal Plus 7(1). https://doi.org/10.1128/ecosalplus.ESP-0015-2015

  3. Yang R, Wang J, Wang F, Zhang H, Tan C, Chen H, Wang X (2023) Blood-brain barrier integrity damage in bacterial meningitis: the underlying link, mechanisms, and therapeutic targets. Int J Mol Sci 24:(3). https://doi.org/10.3390/ijms24032852

    Article  PubMed Central  CAS  Google Scholar 

  4. Coureuil M, Lecuyer H, Bourdoulous S, Nassif X (2017) A journey into the brain: insight into how bacterial pathogens cross blood-brain barriers. Nat Rev Microbiol 15(3):149–159. https://doi.org/10.1038/nrmicro.2016.178

    Article  PubMed  CAS  Google Scholar 

  5. Keaney J, Campbell M (2015) The dynamic blood-brain barrier. FEBS J 282(21):4067–4079. https://doi.org/10.1111/febs.13412

    Article  PubMed  CAS  Google Scholar 

  6. Yang RC, Huang K, Zhang HP, Li L, Zhang YF, Tan C, Chen HC, Jin ML, Wang XR (2022) SARS-CoV-2 productively infects human brain microvascular endothelial cells. J Neuroinflammation 19(1):149. https://doi.org/10.1186/s12974-022-02514-x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Daneman R, Prat A (2015) The blood-brain barrier. Cold Spring Harb Perspect Biol 7(1):a020412. https://doi.org/10.1101/cshperspect.a020412

    Article  PubMed  PubMed Central  Google Scholar 

  8. Abbott NJ (2002) Astrocyte-endothelial interactions and blood-brain barrier permeability. J Anat 200(6):629–638. https://doi.org/10.1046/j.1469-7580.2002.00064.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Armulik A, Genové G, Mäe M, Nisancioglu MH, Wallgard E, Niaudet C, He L, Norlin J, Lindblom P, Strittmatter K, Johansson BR, Betsholtz C (2010) Pericytes regulate the blood-brain barrier. Nature 468(7323):557–561. https://doi.org/10.1038/nature09522

    Article  ADS  PubMed  CAS  Google Scholar 

  10. Pitt JM, Kroemer G, Zitvogel L (2016) Extracellular vesicles: masters of intercellular communication and potential clinical interventions. J Clin Invest 126(4):1139–1143. https://doi.org/10.1172/JCI87316

    Article  PubMed  PubMed Central  Google Scholar 

  11. Yang R, Yang B, Liu W, Tan C, Chen H, Wang X (2023) Emerging role of non-coding RNAs in neuroinflammation mediated by microglia and astrocytes. J Neuroinflammation 20(1):173. https://doi.org/10.1186/s12974-023-02856-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Chettimada S, Lorenz DR, Misra V, Dillon ST, Reeves RK, Manickam C, Morgello S, Kirk GD, Mehta SH, Gabuzda D (2018) Exosome markers associated with immune activation and oxidative stress in HIV patients on antiretroviral therapy. Sci Rep 8(1):7227. https://doi.org/10.1038/s41598-018-25515-4

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  13. Jin J, Shi Y, Gong J, Zhao L, Li Y, He Q, Huang H (2019) Exosome secreted from adipose-derived stem cells attenuates diabetic nephropathy by promoting autophagy flux and inhibiting apoptosis in podocyte. Stem Cell Res Ther 10(1):95. https://doi.org/10.1186/s13287-019-1177-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Colombo M, Raposo G, Théry C (2014) Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol 30:255–289. https://doi.org/10.1146/annurev-cellbio-101512-122326

    Article  PubMed  CAS  Google Scholar 

  15. Mashouri L, Yousefi H, Aref AR, Ahadi AM, Molaei F, Alahari SK (2019) Exosomes: composition, biogenesis, and mechanisms in cancer metastasis and drug resistance. Mol Cancer 18(1):75. https://doi.org/10.1186/s12943-019-0991-5

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kalluri R, LeBleu VS (2020) The biology, function, and biomedical applications of exosomes. Science 367(6478). https://doi.org/10.1126/science.aau6977

  17. Wortzel I, Dror S, Kenific CM, Lyden D (2019) Exosome-mediated metastasis: communication from a distance. Dev Cell 49(3):347–360. https://doi.org/10.1016/j.devcel.2019.04.011

    Article  PubMed  CAS  Google Scholar 

  18. Yang R, Liu W, Miao L, Yang X, Fu J, Dou B, Cai A, Zong X, Tan C, Chen H, Wang X (2016) Induction of VEGFA and Snail-1 by meningitic Escherichia coli mediates disruption of the blood-brain barrier. Oncotarget 7(39):63839–63855. https://doi.org/10.18632/oncotarget.11696

    Article  PubMed  PubMed Central  Google Scholar 

  19. Yang R, Wang X, Liu H, Chen J, Tan C, Chen H, Wang X (2024) Egr-1 is a key regulator of the blood-brain barrier damage induced by meningitic Escherichia coli. Cell Commun Signal 22(1):44. https://doi.org/10.1186/s12964-024-01488-y

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Bobrie A, Colombo M, Raposo G, Théry C (2011) Exosome secretion: molecular mechanisms and roles in immune responses. Traffic 12(12):1659–1668. https://doi.org/10.1111/j.1600-0854.2011.01225.x

    Article  PubMed  CAS  Google Scholar 

  21. Kalluri R (2016) The biology and function of exosomes in cancer. J Clin Invest 126(4):1208–1215. https://doi.org/10.1172/jci81135

    Article  PubMed  PubMed Central  Google Scholar 

  22. Milane L, Singh A, Mattheolabakis G, Suresh M, Amiji MM (2015) Exosome mediated communication within the tumor microenvironment. J Control Release 219:278–294. https://doi.org/10.1016/j.jconrel.2015.06.029

    Article  PubMed  CAS  Google Scholar 

  23. Yang B, Chen Y, Shi J (2019) Exosome biochemistry and advanced nanotechnology for next-generation theranostic platforms. Adv Mater Weinheim 31(2):e1802896. https://doi.org/10.1002/adma.201802896

    Article  CAS  Google Scholar 

  24. Li Q, Wang H, Peng H, Huyan T, Cacalano NA (2019) Exosomes: versatile nano mediators of immune regulation. Cancers 11(10). https://doi.org/10.3390/cancers11101557

  25. Patras KA, Ha AD, Rooholfada E, Olson J, Ramachandra Rao SP, Lin AE, Nizet V (2019) Augmentation of urinary lactoferrin enhances host innate immune clearance of uropathogenic Escherichia coli. J Innate Immun 11(6):481–495. https://doi.org/10.1159/000499342

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Wu Z, Li Y, Liu Q, Liu Y, Chen L, Zhao H, Guo H, Zhu K, Zhou N, Chai TC, Shi B (2019) Pyroptosis engagement and bladder urothelial cell-derived exosomes recruit mast cells and induce barrier dysfunction of bladder urothelium after uropathogenic infection. Am J Physiol Cell Physiol 317(3):C544–C555. https://doi.org/10.1152/ajpcell.00102.2019

    Article  PubMed  CAS  Google Scholar 

  27. Watanabe-Takahashi M, Yamasaki S, Murata M, Kano F, Motoyama J, Yamate J, Omi J, Sato W, Ukai H, Shimasaki K, Ikegawa M, Tamura-Nakano M, Yanoshita R, Nishino Y, Miyazawa A, Natori Y, Toyama-Sorimachi N, Nishikawa K (2018) Exosome-associated Shiga toxin 2 is released from cells and causes severe toxicity in mice. Sci Rep 8(1):10776. https://doi.org/10.1038/s41598-018-29128-9

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  28. Tian Y, Fu C, Wu Y, Lu Y, Liu X, Zhang Y (2021) Central nervous system cell-derived exosomes in neurodegenerative diseases. Oxid Med Cell Longev 2021:9965564. https://doi.org/10.1155/2021/9965564

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Men Y, Yelick J, Jin S, Tian Y, Chiang MSR, Higashimori H, Brown E, Jarvis R, Yang Y (2019) Exosome reporter mice reveal the involvement of exosomes in mediating neuron to astroglia communication in the CNS. Nat Commun 10(1):4136. https://doi.org/10.1038/s41467-019-11534-w

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  30. Bahrini I, Song JH, Diez D, Hanayama R (2015) Neuronal exosomes facilitate synaptic pruning by up-regulating complement factors in microglia. Sci Rep 5:7989. https://doi.org/10.1038/srep07989

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Kahler AK, Djurovic S, Rimol LM, Brown AA, Athanasiu L, Jonsson EG, Hansen T, Gustafsson O, Hall H, Giegling I, Muglia P, Cichon S, Rietschel M, Pietilainen OP, Peltonen L, Bramon E, Collier D, St Clair D, Sigurdsson E et al (2011) Candidate gene analysis of the human natural killer-1 carbohydrate pathway and perineuronal nets in schizophrenia: B3GAT2 is associated with disease risk and cortical surface area. Biol Psychiatry 69(1):90–96. https://doi.org/10.1016/j.biopsych.2010.07.035

    Article  PubMed  CAS  Google Scholar 

  32. He W, Zhao Z, Anees A, Li Y, Ashraf U, Chen Z, Song Y, Chen H, Cao S, Ye J (2017) p21-activated kinase 4 signaling promotes japanese encephalitis virus-mediated inflammation in astrocytes. Front Cell Infect Microbiol 7:271. https://doi.org/10.3389/fcimb.2017.00271

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Eisele G, Wischhusen J, Mittelbronn M, Meyermann R, Waldhauer I, Steinle A, Weller M, Friese MA (2006) TGF-beta and metalloproteinases differentially suppress NKG2D ligand surface expression on malignant glioma cells. Brain 129(Pt 9):2416–2425. https://doi.org/10.1093/brain/awl205

    Article  PubMed  Google Scholar 

  34. Conte M, Giuliani C, Chiariello A, Iannuzzi V, Franceschi C, Salvioli S (2022) GDF15, an emerging key player in human aging. Ageing Res Rev 75:101569. https://doi.org/10.1016/J.Arr.2022.101569

    Article  PubMed  CAS  Google Scholar 

  35. Assadi A, Zahabi A, Hart RA (2020) GDF15, an update of the physiological and pathological roles it plays: a review. Pflug Arch Eur J Phy 472(11):1535–1546. https://doi.org/10.1007/s00424-020-02459-1

    Article  CAS  Google Scholar 

  36. Luan HH, Wang A, Hilliard BK, Carvalho F, Rosen CE, Ahasic AM, Herzog EL, Kang I, Pisani MA, Yu S, Zhang CL, Ring AM, Young LH, Medzhitov R (2019) GDF15 is an inflammation-induced central mediator of tissue tolerance. Cell 178(5):1231–1244. https://doi.org/10.1016/j.cell.2019.07.033

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Wu Q, Jiang D, Schaefer NR, Harmacek L, O'Connor BP, Eling TE, Eickelberg O (2018) Overproduction of growth differentiation factor 15 promotes human rhinovirus infection and virus-induced inflammation in the lung. Am J Physiol Lung Cell Mol Physiol 314(3):L514–l527. https://doi.org/10.1152/ajplung.00324.2017

    Article  PubMed  CAS  Google Scholar 

  38. Zhu S, Yang N, Guan Y, Wang X, Zang GX, Lv XP, Deng SL, Wang W, Li TT, Chen JT (2021) GDF15 promotes glioma stem cell-like phenotype via regulation of ERK1/2-c-Fos-LIF signaling. Cell Death Discov 7(1). https://doi.org/10.1038/s41420-020-00395-8

  39. Guo H, Zhao X, Li H, Liu K, Jiang H, Zeng X, Chang J, Ma C, Fu Z, Lv X, Wang T, Guo H, Liu K, Su H, Li Y (2021) GDF15 promotes cardiac fibrosis and proliferation of cardiac fibroblasts via the MAPK/ERK1/2 pathway after irradiation in rats. Radiat Res 196(2):183–191. https://doi.org/10.1667/RADE-20-00206.1

    Article  PubMed  CAS  Google Scholar 

  40. Urakawa N, Utsunomiya S, Nishio M, Shigeoka M, Takase N, Arai N, Kakeji Y, Koma I, Yokozaki H (2015) GDF15 derived from both tumor-associated macrophages and esophageal squamous cell carcinomas contributes to tumor progression via Akt and Erk pathways. Lab Invest 95(5):491–503. https://doi.org/10.1038/labinvest.2015.36

    Article  PubMed  CAS  Google Scholar 

  41. Li S, Ma YM, Zheng PS, Zhang P (2018) GDF15 promotes the proliferation of cervical cancer cells by phosphorylating AKT1 and Erk1/2 through the receptor ErbB2. J Exp Clin Canc Res 37. https://doi.org/10.1186/s13046-018-0744-0

Download references

Funding

This work was supported by grants from the National Key Research and Development Program of China (2021YDF1800800), the National Natural Science Foundation of China (NSFC) (32122086 and 32102749), the China Postdoctoral Science Foundation (2022M721277 and 2021T140242), the Natural Science Foundation of Hubei Province (2021CFA016), the Fundamental Research Funds for the Central Universities (2662023PY005), and the China Agriculture Research System of MOF and MARA (CARS-35).

Author information

Authors and Affiliations

Authors

Contributions

S.Z., R.Y., and X.Q. performed all experiments. R.Y. and S.Z. analyzed the data and drafted the manuscript. J.W. and J.F. participated in project planning and preparation of exosomes. C.T. and H.C. provided technical and administrative support. X.W. conceived of the project, coordinated and supervised the experiments, and revised the manuscript.

Corresponding author

Correspondence to Xiangru Wang.

Ethics declarations

Ethics Approval and Consent to Participate

All animal experiments in this study were conducted in accordance with the Guide for the Care and Use of Laboratory Animals of the China National Institutes of Health. All procedures and handling techniques were approved by the Committee for the Protection, Supervision, and Control of Experiments on Animals of Huazhong Agricultural University (Approval No. SCXK2020-0019, Animal Welfare Assurance No. 202306010004).

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOC 52 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, R., Qu, X., Zhi, S. et al. Exosomes Derived from Meningitic Escherichia coli–Infected Brain Microvascular Endothelial Cells Facilitate Astrocyte Activation. Mol Neurobiol (2024). https://doi.org/10.1007/s12035-024-04044-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-024-04044-4

Keywords

Navigation