Skip to main content

Advertisement

Log in

Discovery and Exploration of Lipid-Modifying Drug Targets for ALS by Mendelian Randomization

  • Original Article
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Observational studies have faced challenges in identifying replicable causes for amyotrophic lateral sclerosis (ALS). To address this, we employed an unbiased and data-driven approach to discover and explore potential causal exposures using two-sample Mendelian randomization (MR) analyses. In the phenotype discovery stage, we assessed 3948 environmental exposures from the UK Biobank and utilized ALS summary statistics (Europeans, 20,806 cases, 59,804 controls) as the outcome within a phenome-wide MR pipeline. Through a range of sensitivity analyses, two medication traits were identified to be protective for ALS. In the target exploration stage, we further conducted drug target MR analyses using the latest and trans-ethnic summary data on lipid-related traits and ALS (Europeans, 27,205 cases, 110,881 controls; East Asians, 1234 cases, 2850 controls). Our aim was to explore potential causal drug targets through six lipid-modifying effects. These comprehensive analyses revealed significant findings. Specifically, “cholesterol-lowering medication” and “atorvastatin” survived predefined criteria in the phenotype discovery stage and exhibited a protective effect on ALS. Further in the target exploration stage, we demonstrated that the therapeutic effect of APOB through LDL-lowering was associated with reduced ALS liability in Europeans (OR = 0.835, P = 5.61E − 5). Additionally, the therapeutic effect of APOA1 and LDLR through TC-lowering was associated with reduced ALS liability in East Asians (APOA1, OR = 0.859, P = 5.38E − 4; LDLR, OR = 0.910, P = 2.73E − 5). Overall, we propose potential protective effects of cholesterol-lowering drugs or statins on ALS risk from thousands of exposures. Our research also suggests APOB, APOA1, and LDLR as novel therapeutic targets for ALS and supports their potential protective mechanisms may be mediated by LDL-lowering or TC-lowering effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of Data and Materials

The GWAS summary statistics supporting this research are available from the corresponding GWAS consortium. The main paper and supplementary materials present all data supporting our findings. The code or algorithm used to generate results in this study is available from the corresponding authors upon reasonable request.

Abbreviations

ALS:

Amyotrophic lateral sclerosis

CHD:

Coronary heart disease

UKB:

UK Biobank

MRC-IEU:

Medical Research Council Integrative Epidemiology Unit

GWAS:

Genome-wide association studies

SNP:

Single nucleotide polymorphism

MR:

Mendelian randomization

IVW:

Inverse variance weighted

IV:

Instrumental variables

Q test:

Cochran’s Q test

MR-PRESSO:

MR pleiotropy residual sum and outlier

OR:

Odds ratio

CI:

Confidence interval

TG:

Triglycerides

TC:

Total cholesterol

LDL:

Low-density lipoprotein cholesterol

HDL:

High-density lipoprotein cholesterol

ApoB:

Apoprotein B

ApoA1:

Apoprotein A1

EUR:

Europeans

EAS:

East Asians

NA:

Not available

References

  1. Chia R, Chio A, Traynor BJ (2018) Novel genes associated with amyotrophic lateral sclerosis: diagnostic and clinical implications. Lancet Neurol 17:94–102

    Article  CAS  PubMed  Google Scholar 

  2. van Rheenen W, van der Spek RAA, Bakker MK et al (2021) Common and rare variant association analyses in amyotrophic lateral sclerosis identify 15 risk loci with distinct genetic architectures and neuron-specific biology. Nat Genet 53:1636–1648

    Article  PubMed  PubMed Central  Google Scholar 

  3. Brown RH, Al-Chalabi A (2017) Amyotrophic lateral sclerosis. N Engl J Med 377:162–172

    Article  CAS  PubMed  Google Scholar 

  4. Skrivankova VW, Richmond RC, Woolf BAR et al (2021) Strengthening the reporting of observational studies in epidemiology using mendelian randomization: the STROBE-MR statement. JAMA 326:1614–1621

    Article  PubMed  Google Scholar 

  5. Schmidt AF, Finan C, Gordillo-Maranon M et al (2020) Genetic drug target validation using Mendelian randomisation. Nat Commun 11:3255

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hemani G, Zheng J, Elsworth B et al (2018) The MR-Base platform supports systematic causal inference across the human phenome. Elife 7:e34408

  7. Golomb BA, Verden A, Messner AK, Koslik HJ, Hoffman KB (2018) Amyotrophic lateral sclerosis associated with statin use: a disproportionality analysis of the FDA’s Adverse Event Reporting System. Drug Saf 41:403–413

    Article  CAS  PubMed  Google Scholar 

  8. Mariosa D, Kamel F, Bellocco R et al (2020) Antidiabetics, statins and the risk of amyotrophic lateral sclerosis. Eur J Neurol 27:1010–1016

    Article  CAS  PubMed  Google Scholar 

  9. Sorensen HT, Riis AH, Lash TL, Pedersen L (2010) Statin use and risk of amyotrophic lateral sclerosis and other motor neuron disorders. Circ Cardiovasc Qual Outcomes 3:413–417

    Article  PubMed  Google Scholar 

  10. Chio A, Calvo A, Ilardi A et al (2009) Lower serum lipid levels are related to respiratory impairment in patients with ALS. Neurology 73:1681–1685

    Article  CAS  PubMed  Google Scholar 

  11. Mariosa D, Hammar N, Malmström H et al (2017) Blood biomarkers of carbohydrate, lipid, and apolipoprotein metabolisms and risk of amyotrophic lateral sclerosis: a more than 20-year follow-up of the Swedish AMORIS cohort. Ann Neurol 81:718–728

    Article  CAS  PubMed  Google Scholar 

  12. Dupuis L, Corcia P, Fergani A et al (2008) Dyslipidemia is a protective factor in amyotrophic lateral sclerosis. Neurology 70:1004–1009

    Article  CAS  PubMed  Google Scholar 

  13. Goldstein MR, Mascitelli L, Pezzetta F (2008) Dyslipidemia is a protective factor in amyotrophic lateral sclerosis. Neurology. 71:956 (author reply 956–957)

    Article  PubMed  Google Scholar 

  14. Schmitt F, Hussain G, Dupuis L, Loeffler JP, Henriques A (2014) A plural role for lipids in motor neuron diseases: energy, signaling and structure. Front Cell Neurosci 8:25

    Article  PubMed  PubMed Central  Google Scholar 

  15. Timmins HC, Saw W, Cheah BC et al (2017) Cardiometabolic health and risk of amyotrophic lateral sclerosis. Muscle Nerve 56:721–725

    Article  PubMed  Google Scholar 

  16. Kioumourtzoglou MA, Seals RM, Gredal O, Mittleman MA, Hansen J, Weisskopf MG (2016) Cardiovascular disease and diagnosis of amyotrophic lateral sclerosis: a population based study. Amyotroph Lateral Scler Frontotemporal Degener 17:548–554

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hegele RA, Tsimikas S (2019) Lipid-lowering agents targets beyond PCSK9. Circ Res 124:386–404

    Article  CAS  PubMed  Google Scholar 

  18. Zhang XQ, Yang YX, Zhang C et al (2022) Validation of external and internal exposome of the findings associated to cerebral small vessel disease: a Mendelian randomization study. J Cereb Blood Flow Metab 42:1078–1090

    Article  PubMed  PubMed Central  Google Scholar 

  19. Nicolas A, Kenna KP, Renton AE et al (2018) Genome-wide analyses identify KIF5A as a novel ALS gene. Neuron 97:1268-1283.e1266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pierce BL, Burgess S (2013) Efficient design for Mendelian randomization studies: subsample and 2-sample instrumental variable estimators. Am J Epidemiol 178:1177–1184

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hemani G, Tilling K, Davey SG (2017) Orienting the causal relationship between imprecisely measured traits using GWAS summary data. PLoS Genet 13:e1007081

    Article  PubMed  PubMed Central  Google Scholar 

  22. Verbanck M, Chen CY, Neale B, Do R (2018) Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat Genet 50:693–698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nikpay M, Goel A, Won HH et al (2015) A comprehensive 1,000 Genomes-based genome-wide association meta-analysis of coronary artery disease. Nat Genet 47:1121–1130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Graham SE, Clarke SL, Wu KH et al (2021) The power of genetic diversity in genome-wide association studies of lipids. Nature 600:675–679

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Richardson TG, Sanderson E, Palmer TM et al (2020) Evaluating the relationship between circulating lipoprotein lipids and apolipoproteins with risk of coronary heart disease: a multivariable Mendelian randomisation analysis. PLoS Med 17:e1003062

    Article  PubMed  PubMed Central  Google Scholar 

  26. Benyamin B, He J, Zhao Q et al (2017) Cross-ethnic meta-analysis identifies association of the GPX3-TNIP1 locus with amyotrophic lateral sclerosis. Nat Commun 8:611

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  27. Ference BA, Ray KK, Catapano AL et al (2019) Mendelian Randomization Study of ACLY and Cardiovascular Disease. N Engl J Med 380:1033–1042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Williams DM, Bandres-Ciga S, Heilbron K et al (2020) Evaluating lipid-lowering drug targets for Parkinson’s disease prevention with mendelian randomization. Ann Neurol 88:1043–1047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Levin MG, Zuber V, Walker VM et al (2021) Prioritizing the role of major lipoproteins and subfractions as risk factors for peripheral artery disease. Circulation 144:353–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang JQ, Li LL, Hu A et al (2022) Inhibition of ASGR1 decreases lipid levels by promoting cholesterol excretion. Nature 608:413–420

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Reiner Z (2013) Managing the residual cardiovascular disease risk associated with HDL-cholesterol and triglycerides in statin-treated patients: a clinical update. Nutr Metab Cardiovasc Dis 23:799–807

    Article  CAS  PubMed  Google Scholar 

  32. Barter PJ, Brandrup-Wognsen G, Palmer MK, Nicholls SJ (2010) Effect of statins on HDL-C: a complex process unrelated to changes in LDL-C: analysis of the VOYAGER Database. J Lipid Res 51:1546–1553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Thanassoulis G, Williams K, Ye K et al (2014) Relations of change in plasma levels of LDL-C, non-HDL-C and apoB with risk reduction from statin therapy: a meta-analysis of randomized trials. J am heart assoc 3:e000759

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zeng P, Zhou X (2019) Causal effects of blood lipids on amyotrophic lateral sclerosis: a Mendelian randomization study. Hum Mol Genet 28:688–697

    Article  CAS  PubMed  Google Scholar 

  35. Ference BA, Kastelein JJP, Ginsberg HN et al (2017) Association of genetic variants related to CETP inhibitors and statins with lipoprotein levels and cardiovascular risk. JAMA 318:947–956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nowak C, Arnlov J (2018) A Mendelian randomization study of the effects of blood lipids on breast cancer risk. Nat Commun 9:3957

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  37. Ference BA, Kastelein JJP, Ray KK et al (2019) Association of triglyceride-lowering LPL variants and LDL-C-lowering LDLR variants with risk of coronary heart disease. JAMA 321:364–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang Q, Wang Y, Lehto K, Pedersen NL, Williams DM, Hagg S (2019) Genetically-predicted life-long lowering of low-density lipoprotein cholesterol is associated with decreased frailty: a Mendelian randomization study in UK biobank. EBioMedicine 45:487–494

    Article  PubMed  PubMed Central  Google Scholar 

  39. Noyce AJ, Bandres-Ciga S, Kim J et al (2019) The Parkinson’s disease Mendelian randomization research portal. Mov Disord 34:1864–1872

    Article  PubMed  PubMed Central  Google Scholar 

  40. Bowden J, Del Greco MF, Minelli C, Davey Smith G, Sheehan NA, Thompson JR (2016) Assessing the suitability of summary data for two-sample Mendelian randomization analyses using MR-Egger regression: the role of the I2 statistic. Int J Epidemiol 45:1961–1974

    PubMed  PubMed Central  Google Scholar 

  41. Ference BA, Majeed F, Penumetcha R, Flack JM, Brook RD (2015) Effect of naturally random allocation to lower low-density lipoprotein cholesterol on the risk of coronary heart disease mediated by polymorphisms in NPC1L1, HMGCR, or Both: a 2 x 2 factorial Mendelian randomization study. J Am Coll Cardiol 65:1552–1561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ference BA, Robinson JG, Brook RD et al (2016) Variation in PCSK9 and HMGCR and risk of cardiovascular disease and diabetes. N Engl J Med 375:2144–2153

    Article  CAS  PubMed  Google Scholar 

  43. Yan Z, Xu Y, Li K, Liu L (2023) Association between genetically proxied lipid-lowering drug targets, lipid traits, and amyotrophic lateral sclerosis: a mendelian randomization study. Acta Neurol Belg [online ahead of print]

  44. Wang W, Zhang L, Xia K, Huang T, Fan D (2023) Mendelian randomization analysis reveals statins potentially increase amyotrophic lateral sclerosis risk independent of peripheral cholesterol-lowering effects. Biomedicines 11(5):1359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Li Z, Tian M, Jia H et al (2023) Genetic variation in targets of lipid-lowering drugs and amyotrophic lateral sclerosis risk: a Mendelian randomization study. Amyotroph Lateral Scler Frontotemporal Degener 25(1–2):197–206

    PubMed  Google Scholar 

  46. Pan S, Kang H, Liu X et al (2022) Brain Catalog: a comprehensive resource for the genetic landscape of brain-related traits. Nucleic Acids Res 51(D1): D835–D844

  47. Bandres-Ciga S, Noyce AJ, Hemani G et al (2019) Shared polygenic risk and causal inferences in amyotrophic lateral sclerosis. Ann Neurol 85(4):470–481

    Article  PubMed  PubMed Central  Google Scholar 

  48. Thompson A, Talbot K, Turner M (2022) Higher blood high density lipoprotein and apolipoprotein A1 levels are associated with reduced risk of developing amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 93:75–81

    Article  PubMed  Google Scholar 

  49. Xia K, Klose V, Högel J et al (2023) Lipids and amyotrophic lateral sclerosis: a two-sample Mendelian randomization study. Eur J Neurol 30:1899–1906

    Article  PubMed  Google Scholar 

  50. Julian TH, Boddy S, Islam M et al (2022) A review of Mendelian randomization in amyotrophic lateral sclerosis. Brain 145:832–842

    Article  PubMed  Google Scholar 

  51. Pfrieger FW (2003) Cholesterol homeostasis and function in neurons of the central nervous system. Cell Mol Life Sci 60:1158–1171

    Article  CAS  PubMed  Google Scholar 

  52. Wong JK, Roselle AK, Shue TM et al (2022) Apolipoprotein B-100-mediated motor neuron degeneration in sporadic amyotrophic lateral sclerosis. Brain Commun 4: fcac207

  53. Andrikoula M, McDowell IF (2008) The contribution of ApoB and ApoA1 measurements to cardiovascular risk assessment. Diabetes Obes Metab 10:271–278

    Article  CAS  PubMed  Google Scholar 

  54. Tiniakou I, Drakos E, Sinatkas V et al (2015) High-density lipoprotein attenuates Th1 and th17 autoimmune responses by modulating dendritic cell maturation and function. J Immunol 194:4676–4687

    Article  CAS  PubMed  Google Scholar 

  55. Sengupta MB, Saha S, Mohanty PK, Mukhopadhyay KK, Mukhopadhyay D (2017) Increased expression of ApoA1 after neuronal injury may be beneficial for healing. Mol Cell Biochem 424:45–55

    Article  CAS  PubMed  Google Scholar 

  56. Ho WY, Chang JC, Lim K et al (2021) TDP-43 mediates SREBF2-regulated gene expression required for oligodendrocyte myelination. J Cell Biol 220(9):e201910213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by the National Key Research and Development Program of China (Grant No. 2022YFC2703101 to Y.P.C), the National Natural Science Fund of China (Grant No. 82371422 and 81971188 to Y.P.C.), the National Natural Science Fund of Sichuan (Grant No. 2022NSFSC0749 to B.C.), and the Science and Technology Bureau Fund of Sichuan Province (Grant No. 2023YFS0269 to Y.P.C). We are grateful to all the studies that have made the public GWAS summary data available. We thank all the patients and their families for their generous contribution to this research.

Author information

Authors and Affiliations

Authors

Contributions

Z.J. and Y.P.C. contributed to the conception and design of the study; Z.J., X.J.G., W.M.S., Q.Q.D., K.F.Y., Y.L.R., Y.W., and B.C. contributed to the acquisition and analysis of data; Z.J. and Y.P.C. contributed to drafting the text and preparing the figures.

Corresponding author

Correspondence to Yong-Ping Chen.

Ethics declarations

Ethics Approval

This research involves analyzing publicly available data, for which ethical approval and individual consent were obtained from all original studies.

Patient Consent for Publication

Not required.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 18639 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Z., Gu, XJ., Su, WM. et al. Discovery and Exploration of Lipid-Modifying Drug Targets for ALS by Mendelian Randomization. Mol Neurobiol (2024). https://doi.org/10.1007/s12035-024-04007-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-024-04007-9

Keywords

Navigation