Epigallocatechin Gallate Modulates Microglia Phenotype to Suppress Pro-inflammatory Signalling Cues and Inhibit Phagocytosis

Author:

Regan Philip,Hole Katriona L.,Sero JuliaORCID,Williams Robert J.ORCID

Abstract

AbstractMicroglia are crucial players in the pathogenesis of late-onset Alzheimer’s disease (AD), with evidence for both deleterious and beneficial effects. Identifying interventions to modulate microglial responsiveness, promote amyloid β (Aβ) clearance, disrupt plaque formation, or dampen excessive inflammation has therapeutic potential. Bioavailable flavonoids, such as the flavan 3-ols, are of interest due to their antioxidant, metal chelating, signalling, and anti-inflammatory potential. Primary microglia were treated with a series of structurally related flavanol 3-ols to assess effects on phagocytosis, cytokine release, and transcriptional responses by RNA sequencing. Data indicated that the extent of hydroxylation and the presence of the galloyl moiety were strong determinants of flavan 3-ol activity. Epigallocatechin gallate (EGCG) was the most effective flavan-3-ol tested and strongly inhibited phagocytosis of Aβ independent of any metal chelating properties, suggesting a more direct modulation of microglia responsiveness. EGCG was broadly anti-inflammatory, reducing cytokine release and downregulating transcription, particularly of components of the microglia extracellular matrix such as MMP3 and SerpinB2. Collectively, this brings new insight into the actions of flavonoids on microglial responsiveness with potential implications for the therapeutic use of EGCG and structurally related flavanol-3-ols in AD.

Funder

Alzheimer's Society

Medical Research Council

Alzheimer’s Research UK

GW4 Generator Fund Grant

Publisher

Springer Science and Business Media LLC

Subject

Neuroscience (miscellaneous),Cellular and Molecular Neuroscience,Neurology

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3