Ucp4 Knockdown of Cerebellar Purkinje Cells Induces Bradykinesia

Author:

Wang Ya-YunORCID,Liu Hui,Li Shu-JiaoORCID,Feng Ban,Huang Yun-Qiang,Liu Shui-Bing,Yang Yan-LingORCID

Abstract

AbstractAlthough uncoupling protein 4 (UCP4) is the most abundant protein reported in the brain, the biological function of UCP4 in cerebellum and pathological outcome of UCP4 deficiency in cerebellum remain obscure. To evaluate the role of Ucp4 in the cerebellar Purkinje cells (PCs), we generated the conditional knockdown of Ucp4 in PCs (Pcp2cre;Ucp4fl/fl mice) by breeding Ucp4fl/fl mice with Pcp2cre mice. Series results by Western blot, immunofluorescent staining, and triple RNAscope in situ hybridization confirmed the specific ablation of Ucp4 in PCs in Pcp2cre;Ucp4fl/fl mice, but did not affect the expression of Ucp2, the analog of Ucp4. Combined behavioral tests showed that Pcp2cre;Ucp4fl/fl mice displayed a characteristic bradykinesia in the spontaneous movements. The electromyogram recordings detection excluded the possibility of hypotonia in Pcp2cre;Ucp4fl/fl mice. And the electrical patch clamp recordings showed the altered properties of PCs in Pcp2cre;Ucp4fl/fl mice. Moreover, transmission electron microscope (TEM) results showed the increased mitochondrial circularity in PCs; ROS probe imaging showed the increased ROS generation in molecular layer; and finally, microplate reader assay showed the significant changes of mitochondrial functions, including ROS, ATP, and MMP in the isolated cerebellum tissue. The results suggested that the specific knockdown of mitochondrial protein Ucp4 could damage PCs possibly by attacking their mitochondrial function. The present study is the first to report a close relationship between UCP4 deletion with PCs impairment, and suggests the importance of UCP4 in the substantial support of mitochondrial function homeostasis in bradykinesia. UCP4 might be a therapeutic target for the cerebellar-related movement disorder. Graphical Abstract

Publisher

Springer Science and Business Media LLC

Subject

Neuroscience (miscellaneous),Cellular and Molecular Neuroscience,Neurology

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3