Skip to main content

Advertisement

Log in

Ferroptosis and Pyroptosis in Epilepsy

  • Reviews
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Epilepsy is sudden, recurrent, and transient central nervous system dysfunction caused by abnormal discharge of neurons in the brain. Ferroptosis and pyroptosis are newly discovered ways of programmed cell death. One of the characteristics of ferroptosis is the oxidative stress generated by lipid peroxides. Similarly, pyroptosis has unique pro-inflammatory properties. As both oxidative stress and neuroinflammation are significant contributors to the pathogenesis of epilepsy, increasing evidence shows that ferroptosis and pyroptosis are closely related to epilepsy. This article reviews the current comprehension of ferroptosis and pyroptosis and elucidates potential mechanisms by which ferroptosis and pyroptosis may contribute to epilepsy. In addition, we also highlight the possible interactions between ferroptosis and pyroptosis because they reportedly coexist in many diseases, and increasing studies have demonstrated the convergence of pathways between the two. This is of great significance for explaining the occurrence and development of epilepsy and provides a new therapeutic perspective for the treatment of epilepsy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Fisher RS, Boas W, Blume W, Elger C, Genton P, Lee P, Engel J (2005) Epileptic seizures and epilepsy: definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Aktuelle Neurologie 32(5):249–252. https://doi.org/10.1055/s-2005-866879

    Article  Google Scholar 

  2. Henshall DC, Simon RP (2005) Epilepsy and apoptosis pathways. J Cereb Blood Flow Metab 25(12):1557–1572. https://doi.org/10.1038/sj.jcbfm.9600149

    Article  CAS  PubMed  Google Scholar 

  3. Guimaraes CA, Linden R (2004) Programmed cell deaths-apoptosis and alternative deathstyles. Eur J Biochem 271(9):1638–1650. https://doi.org/10.1111/j.1432-1033.2004.04084.x

    Article  CAS  Google Scholar 

  4. Cheng Y, Song Y, Chen H, Li Q, Gao Y, Lu G, Luo C (2021) Ferroptosis mediated by lipid reactive oxygen species: a possible causal link of neuroinflammation to neurological disorders. Oxid Med Cell Longev 2021. https://doi.org/10.1155/2021/5005136

  5. Vezzani A, Balosso S, Ravizza T (2019) Neuroinflammatory pathways as treatment targets and biomarkers in epilepsy. Nat Rev Neurol 15(8):459–472. https://doi.org/10.1038/s41582-019-0217-x

    Article  CAS  PubMed  Google Scholar 

  6. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ et al (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149(5):1060–1072. https://doi.org/10.1016/j.cell.2012.03.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Agmon E, Solon J, Bassereau P, Stockwell BR (2018) Modeling the effects of lipid peroxidation during ferroptosis on membrane properties. Sci Rep 8(5155). https://doi.org/10.1038/s41598-018-23408-0

  8. Stockwell BR, Angeli JPF, Bayir H, Bush AI, Conrad M, Dixon SJ, Fulda S, Gascon S et al (2017) Ferroptosis: a regulated cell death nexus linking metabolism, Redox Biology, and Disease. Cell 171(2):273–285. https://doi.org/10.1016/j.cell.2017.09.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yagoda N, von Rechenberg M, Zaganjor E, Bauer AJ, Yang WS, Fridman DJ, Wolpaw AJ, Smukste I et al (2007) RAS-RAF-MEK-dependent oxidative cell death involving voltage-dependent anion channels. Nature 447(7146):864–868. https://doi.org/10.1038/nature05859

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ji C, Kosman DJ (2015) Molecular mechanisms of non-transferrin-bound and transferring-bound iron uptake in primary hippocampal neurons. J Neurochem 133(5):668–683. https://doi.org/10.1111/jnc.13040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Islam QT, Sayers DE, Theil EC (1989) Studies of temperature-dependence of iron environment in an undecairon(III) oxo-hydroxo aggregate compound compared to horse spleen ferritin. Physica B Condens Matter 158(1–3):99–100. https://doi.org/10.1016/0921-4526(89)90213-5

    Article  ADS  CAS  Google Scholar 

  12. Hassannia B, Vandenabeele P, Vanden Berghe T (2019) Targeting ferroptosis to iron out cancer. Cancer Cell 35(6):830–849. https://doi.org/10.1016/j.ccell.2019.04.002

    Article  CAS  PubMed  Google Scholar 

  13. Kagan VE, Mao GW, Qu F, Angeli JPF, Doll S, St Croix C, Dar HH, Liu B et al (2017) Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat Chem Biol 13(1):81–90. https://doi.org/10.1038/NCHEMBIO.2238

    Article  CAS  PubMed  Google Scholar 

  14. Sato H, Tamba M, Ishii T, Bannai S (1999) Cloning and expression of a plasma membrane cystine/glutamate exchange transporter composed of two distinct proteins. J Biol Chem 274(17):11455–11458. https://doi.org/10.1074/jbc.274.17.11455

    Article  CAS  PubMed  Google Scholar 

  15. Morris G, Berk M, Carvalho AF, Maes M, Walker AJ, Puri BK (2018) Why should neuroscientists worry about iron? The emerging role of ferroptosis in the pathophysiology of neuroprogressive diseases. Behav Brain Res 341:154–175. https://doi.org/10.1016/j.bbr.2017.12.036

    Article  CAS  PubMed  Google Scholar 

  16. Moosmann B, Behl C (2004) Selenoproteins, cholesterol-lowering drugs, and the consequences-revisiting of the mevalonate pathway. Trends Cardiovasc Med 14(PII S1050–1738(04)00117–37):273–281. https://doi.org/10.1016/j.tcm.2004.08.003

  17. Bentinger M, Brismar K, Dallner G (2007) The antioxidant role of coenzyme Q. Mitochondrion 7S:S41–S50. https://doi.org/10.1016/j.mito.2007.02.006

    Article  CAS  Google Scholar 

  18. Kanayama M, Shinohara ML (2016) Roles of autophagy and autophagy-related proteins in antifungal immunity. Front Immunol 7(47). https://doi.org/10.3389/fimmu.2016.00047

  19. Ajoolabady A, Aslkhodapasandhokmabad H, Libby P, Tuomeilehto J, Lip GYH, Penninger JM, Richarrdson DR, Tang D et al (2021) Ferritinophagy and ferroptosis in the management of metabolic diseases. Trends Endocrinol Metab 32(7):444–462. https://doi.org/10.1016/j.tem.2021.04.010

    Article  CAS  PubMed  Google Scholar 

  20. Dong W, Tan Y, Qin Q, Yang B, Zhu Q, Xu L, Liu Z, Song E et al (2019) Polybrominated diphenyl ethers quinone induces NCOA4-mediated ferritinophagy through selectively autophagic degradation of ferritin. Chem Res Toxicol 32(12):2509–2516. https://doi.org/10.1021/acs.chemrestox.9b00350

    Article  CAS  PubMed  Google Scholar 

  21. Ward R, Zucca FA, Duyn JH, Crichton RR, Zecca L (2014) The role of iron in brain ageing and neurodegenerative disorders. Lancet Neurol 13(10):1045–1060. https://doi.org/10.1016/S1474-4422(14)70117-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Engelborghs S, D’Hooge R, De Deyn PP (2000) Pathophysiology of epilepsy. Acta Neurol Belg 100(4):201–213

    CAS  PubMed  Google Scholar 

  23. Mori A, Yokoi I, Noda Y, Willmore LJ (2004) Natural antioxidants may prevent posttraumatic epilepsy: a proposal based on experimental animal studies. Acta Med Okayama 58(3):111–118

    CAS  PubMed  Google Scholar 

  24. Willmore LJ, Sypert GW, Munson JB (1978) Recurrent seizures induced by cortical iron injection-model of post-traumatic epilepsy. Ann Neurol 4(4):329–336. https://doi.org/10.1002/ana.410040408

    Article  CAS  PubMed  Google Scholar 

  25. Willmore LJ, Sypert GW, Munson JB, Hurd RW (1978) Chronic focal epileptiform discharges induced by injection of iron into rat and cat cortex. Science 200(4349):1501–1503. https://doi.org/10.1126/science.96527

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Willmore LJ, Hurd RW, Sypert GW (1978) Epileptiform activity initiated by pial iontophoresis of ferrous and ferric-chloride on rat cerebral-cortex. Brain Res 152(2):406–410. https://doi.org/10.1016/0006-8993(78)90273-1

    Article  CAS  PubMed  Google Scholar 

  27. Ikeda M (2001) Iron overload without the C282Y mutation in patients with epilepsy. J Neurol Neurosurg Psychiatry 70(4):551–553. https://doi.org/10.1136/jnnp.70.4.551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cavus I, Romanyshyn JC, Kennard JT, Farooque P, Williamson A, Eid T, Spencer SS, Duckrow R et al (2016) Elevated basal glutamate and unchanged glutamine and GABA in refractory epilepsy: microdialysis study of 79 patients at the Yale epilepsy surgery program. Ann Neurol 80(1):35–45. https://doi.org/10.1002/ana.24673

    Article  CAS  PubMed  Google Scholar 

  29. Hayano M, Yang WS, Corn CK, Pagano NC, Stockwell BR (2016) Loss of cysteinyl-tRNA synthetase (CARS) induces the transsulfuration pathway and inhibits ferroptosis induced by cystine deprivation. Cell Death Differ 23(2):270–278. https://doi.org/10.1038/cdd.2015.93

    Article  CAS  PubMed  Google Scholar 

  30. Mao X, Zhou H, Jin W (2019) Ferroptosis induction in pentylenetetrazole kindling and pilocarpine-induced epileptic seizures in mice. Front Neurosci 13(721). https://doi.org/10.3389/fnins.2019.00721

  31. Ye Q, Zeng C, Dong L, Wu Y, Huang Q, Wu Y (2019) Inhibition of ferroptosis processes ameliorates cognitive impairment in kainic acid-induced temporal lobe epilepsy in rats. Am J Transl Res 11(2):875–884

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Pillai R, Uyehara-Lock JH, Bellinger FP (2014) Selenium and selenoprotein function in brain disorders. IUBMB Life 66(4):229–239. https://doi.org/10.1002/iub.1262

    Article  CAS  PubMed  Google Scholar 

  33. Ingold I, Berndt C, Schmitt S, Doll S, Poschmann G, Buday K, Roveri A, Peng X et al (2018) Selenium utilization by GPX4 is required to prevent hydroperoxide-induced ferroptosis. Cell 172(3):409. https://doi.org/10.1016/j.cell.2017.11.048

    Article  CAS  PubMed  Google Scholar 

  34. Wirth EK, Conrad M, Winterer J, Wozny C, Carlson BA, Roth S, Schmitz D, Bornkamm GW et al (2010) Neuronal selenoprotein expression is required for interneuron development and prevents seizures and neurodegeneration. Faseb J 24(3):844–852. https://doi.org/10.1096/fj.09-143974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mueller SG, Trabesinger AH, Boesiger P, Wieser HG (2001) Brain glutathione levels in patients with epilepsy measured by in vivo H-1-MRS. Neurology 57(8):1422–1427. https://doi.org/10.1212/WNL.57.8.1422

    Article  CAS  PubMed  Google Scholar 

  36. Smith AC, Mears AJ, Bunker R, Ahmed A, Mackenzie M, Schwartzentruber JA, Beaulieu CL, Ferretti E et al (2014) Mutations in the enzyme glutathione peroxidase 4 cause Sedaghatian-type spondylometaphyseal dysplasia. J Med Genet 51(7):470–474. https://doi.org/10.1136/jmedgenet-2013-102218

    Article  CAS  PubMed  Google Scholar 

  37. Wirth EK, Bharathi BS, Hatfield D, Conrad M, Brielmeier M, Schweizer U (2014) Cerebellar hypoplasia in mice lacking selenoprotein biosynthesis in neurons. Biol Trace Elem Res 158(2):203–210. https://doi.org/10.1007/s12011-014-9920-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pitts MW, Byrns CN, Ogawa-Wong AN, Kremer P, Berry MJ (2014) Selenoproteins in nervous system development and function. Biol Trace Elem Res 161(3SI):231–245. https://doi.org/10.1007/s12011-014-0060-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jin Y, Ren L, Jing X, Wang H (2023) Targeting ferroptosis as novel therapeutic approaches for epilepsy. Front Pharmacol 14(1185071). https://doi.org/10.3389/fphar.2023.1185071

  40. Zou X, Jiang S, Wu Z, Shi Y, Cai S, Zhu R, Chen L (2017) Effectiveness of deferoxamine on ferric chloride-induced epilepsy in rats. Brain Res 1658:25–30. https://doi.org/10.1016/j.brainres.2017.01.001

    Article  CAS  PubMed  Google Scholar 

  41. Kahn-Kirby AH, Amagata A, Maeder CI, Mei JJ, Sideris S, Kosaka Y, Hinman A, Malone SA et al (2019) Targeting ferroptosis: a novel therapeutic strategy for the treatment of mitochondrial disease-related epilepsy. PLoS One 14(e02142503). https://doi.org/10.1371/journal.pone.0214250

  42. Baluchnejadmojarad T, Roghani M (2013) Coenzyme Q10 ameliorates neurodegeneration, mossy fiber sprouting, and oxidative stress in intrahippocampal kainate model of temporal lobe epilepsy in rat. J Mol Neurosci 49(1):194–201. https://doi.org/10.1007/s12031-012-9886-2

    Article  CAS  PubMed  Google Scholar 

  43. Li Q, Li Q, Jia J, Sun Q, Zhou H, Jin W, Mao X (2019) Baicalein exerts neuroprotective effects in FeCl3-induced posttraumatic epileptic seizures via suppressing ferroptosis. Front Pharmacol 10(638). https://doi.org/10.3389/fphar.2019.00638

  44. Harrison PM, Arosio P (1996) Ferritins: molecular properties, iron storage function and cellular regulation. Biochim Biophys Acta Bioenerg 1275(3):161–203. https://doi.org/10.1016/0005-2728(96)00022-9

    Article  Google Scholar 

  45. Jorgensen I, Zhang Y, Krantz BA, Miao EA (2016) Pyroptosis triggers pore-induced intracellular traps (PITs) that capture bacteria and lead to their clearance by efferocytosis. J Exp Med 213(10):2113–2128. https://doi.org/10.1084/jem.20151613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ding J, Wang K, Liu W, She Y, Sun Q, Shi J, Sun H, Wang D et al (2016) Pore-forming activity and structural autoinhibition of the gasdermin family. Nature 535(7610):111. https://doi.org/10.1038/nature18590

    Article  ADS  CAS  PubMed  Google Scholar 

  47. Shi J, Zhao Y, Wang K, Shi X, Wang Y, Huang H, Zhuang Y, Cai T et al (2015) Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526(7575):660–665. https://doi.org/10.1038/nature15514

    Article  ADS  CAS  PubMed  Google Scholar 

  48. Kayagaki N, Stowe IB, Lee BL, O’Rourke K, Anderson K, Warming S, Cuellar T, Haley B et al (2015) Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 526(7575):666–671. https://doi.org/10.1038/nature15541

    Article  ADS  CAS  PubMed  Google Scholar 

  49. Martinon F, Burns K, Tschopp J (2002) The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 10(2):417–426. https://doi.org/10.1016/S1097-2765(02)00599-3

    Article  CAS  PubMed  Google Scholar 

  50. von Moltke J, Ayres JS, Kofoed EM, Chavarria-Smith J, Vance RE (2013) Recognition of bacteria by inflammasomes. In: Yokoyama WM (ed) Littman DR. Annual Review of Immunology ANNUAL REVIEWS, PALO ALTO, pp 73–106

    Google Scholar 

  51. Martinon F, Mayor A, Tschopp J (2009) The inflammasomes: guardians of the body. Annu Rev Immunol 27:229–265. https://doi.org/10.1146/annurev.immunol.021908.132715

    Article  CAS  PubMed  Google Scholar 

  52. Aglietti RA, Estevez A, Gupta A, Ramirez MG, Liu PS, Kayagaki N, Ciferri C, Dixit VM et al (2016) GsdmD p30 elicited by caspase-11 during pyroptosis forms pores in membranes. Proc Natl Acad Sci U S A 113(28):7858–7863. https://doi.org/10.1073/pnas.1607769113

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  53. Shi J, Gao W, Shao F (2017) Pyroptosis: gasdermin-mediated programmed necrotic cell death. Trends Biochem Sci 42(4):245–254. https://doi.org/10.1016/j.tibs.2016.10.004

    Article  CAS  PubMed  Google Scholar 

  54. Jbaker P, Boucher D, Bitto NJ, Bierschenk D, Tebartz C, Whitney PG, Bedoui S, Schroder K et al (2017) NLRP3 inflammasome activation downstream of cytoplasmic LPS recognition by both caspase-4 and caspase-5. Cytokine 100(SI):98

  55. Sarhan J, Liu BC, Muendlein HI, Li P, Nilson R, Tang AY, Rongvaux A, Bunnell SC et al (2018) Caspase-8 induces cleavage of gasdermin D to elicit pyroptosis during Yersinia infection. Proc Natl Acad Sci U S A 115(46):E10888–E10897. https://doi.org/10.1073/pnas.1809548115

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hou J, Zhao R, Xia W, Chang C, You Y, Hsu J, Nie L, Chen Y et al (2020) PD-L1-mediated gasdermin C expression switches apoptosis to pyroptosis in cancer cells and facilitates tumour necrosis. Nat Cell Biol 22(10):1264. https://doi.org/10.1038/s41556-020-0575-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wang Y, Gao W, Shi X, Ding J, Liu W, He H, Wang K, Shao F (2017) Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin. Nature 547(7661):99. https://doi.org/10.1038/nature22393

    Article  ADS  CAS  PubMed  Google Scholar 

  58. Zheng M, Karki R, Vogel P, Kanneganti T (2020) Caspase-6 is a key regulator of innate immunity, inflammasome activation, and host defense. Cell 181(3):674. https://doi.org/10.1016/j.cell.2020.03.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Liu Y, Fang Y, Chen X, Wang Z, Liang X, Zhang T, Liu M, Zhou N et al (2020) Gasdermin E-mediated target cell pyroptosis by CAR T cells triggers cytokine release syndrome. Sci Immunol 5(eaax796943). https://doi.org/10.1126/sciimmunol.aax7969

  60. Atabaki R, Khaleghzadeh-Ahangar H, Esmaeili N, Mohseni-Moghaddam P (2023) Role of pyroptosis, a pro-inflammatory programmed cell death, in epilepsy. Cell Mol Neurobiol 43(3):1049–1059. https://doi.org/10.1007/s10571-022-01250-3

    Article  CAS  PubMed  Google Scholar 

  61. Xiaoqin Z, Zhengli L, Changgeng Z, Xiaojing W, Li L (2005) Changes in behavior and amino acid neurotransmitters in the brain of rats with seizure induced by IL-1beta or IL-6. Journal of Huazhong University of Science and Technology. Medical sciences = Hua zhong ke ji da xue xue bao. Yi xue Ying De wen ban = Huazhong keji daxue xuebao. Yixue Yingdewen ban 25(3)

  62. Vezzani A, Moneta D, Conti M, Richichi C, Ravizza T, De Luigi A, De Simoni MG, Sperk G et al (2000) Powerful anticonvulsant action of IL-1 receptor antagonist on intracerebral injection and astrocytic overexpression in mice. Proc Natl Acad Sci U S A 97(21):11534–11539. https://doi.org/10.1073/pnas.190206797

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  63. Vezzani A, Friedman A, Dingledine RJ (2013) The role of inflammation in epileptogenesis. Neuropharmacology 69(SI):16–24. https://doi.org/10.1016/j.neuropharm.2012.04.004

    Article  CAS  PubMed  Google Scholar 

  64. Khaboushan AS, Yazdanpanah N, Rezaei N (2022) Neuroinflammation and proinflammatory cytokines in epileptogenesis. Mol Neurobiol 59(3):1724–1743. https://doi.org/10.1007/s12035-022-02725-6

    Article  CAS  Google Scholar 

  65. Kamali AN, Zian Z, Bautista JM, Hamedifar H, Hossein-Khannazer N, Hosseinzadeh R, Yazdani R, Azizi G (2021) The potential role of pro-inflammatory and anti-inflammatory cy-tokines in epilepsy pathogenesis. Endocr Metab Immune Disord Drug Targets 21(10):1760–1774. https://doi.org/10.2174/1871530320999201116200940

    Article  CAS  PubMed  Google Scholar 

  66. Fu C, He X, Li X, Zhang X, Huang Z, Li J, Chen M, Duan C (2015) Nefiracetam attenuates pro-inflammatory cytokines and GABA transporter in specific brain regions of rats with post-ischemic seizures. Cell Physiol Biochem 37(5):2023–2031. https://doi.org/10.1159/000438562

    Article  CAS  PubMed  Google Scholar 

  67. Xiao Z, Peng J, Wu L, Arafat A, Yin F (2017) The effect of IL-1 beta on synaptophysin expression and electrophysiology of hippocampal neurons through the PI3K/Akt/mTOR signaling pathway in a rat model of mesial temporal lobe epilepsy. Neurol Res 39(7):640–648. https://doi.org/10.1080/01616412.2017.1312070

    Article  CAS  PubMed  Google Scholar 

  68. Castaneda-Cabral JL, Urena-Guerrero ME, Beas-Zarate C, Colunga-Duran A, Nunez-Lumbreras MDLA, Orozco-Suarez S, Alonso-Vanegas M, Guevara-Guzman R et al (2020) Increased expression of proinflammatory cytokines and iNOS in the neocortical microvasculature of patients with temporal lobe epilepsy. Immunol Res 68(3):169–176. https://doi.org/10.1007/s12026-020-09139-3

    Article  CAS  PubMed  Google Scholar 

  69. Zhang X, Jin T, Quezada HC, Mix E, Winblad B, Zhu J (2010) Research kainic acid-induced microglial activation is attenuated in aged interleukin-18 deficient mice. J Neuroinflammation 7(26). https://doi.org/10.1186/1742-2094-7-26

  70. Jung HK, Ryu HJ, Kim M, Kim WI, Choi HK, Choi H, Song H, Jo S et al (2012) Interleukin-18 attenuates disruption of brain-blood barrier induced by status epilepticus within the rat piriform cortex in interferon-gamma independent pathway. Brain Res 1447:126–134. https://doi.org/10.1016/j.brainres.2012.01.057

    Article  CAS  PubMed  Google Scholar 

  71. Tan C, Zhang J, Tan M, Chen H, Meng D, Jiang T, Meng X, Li Y et al (2015) NLRP1 inflammasome is activated in patients with medial temporal lobe epilepsy and contributes to neuronal pyroptosis in amygdala kindling-induced rat model. J Neuroinflammation 12(18). https://doi.org/10.1186/s12974-014-0233-0

  72. de Brito Toscano EC, Marciano Vieira EL, Rocha Dias BB, Caliari MV, Goncalves AP, Giannetti AV, Siqueira JM, Suemoto CK et al (2021) NLRP3 and NLRP1 inflammasomes are up-regulated in patients with mesial temporal lobe epilepsy and may contribute to overexpression of caspase-1 and IL-beta in sclerotic hippocampi. Brain Res 1752(147230). https://doi.org/10.1016/j.brainres.2020.147230

  73. Gao B, Wu Y, Yang Y, Li W, Dong K, Zhou J, Yin Y, Huang D et al (2018) Sinomenine exerts anticonvulsant profile and neuroprotective activity in pentylenetetrazole kindled rats: involvement of inhibition of NLRP1 inflammasome. J Neuroinflammation 15(152). https://doi.org/10.1186/s12974-018-1199-0

  74. Ramazi S, Fahanik-Babaei J, Mohamadi-Zarch S, Tashakori-Miyanroudi M, Nourabadi D, Nazari-Serenjeh M, Roghani M, Baluchnejadmojarad T (2020) Neuroprotective and anticonvulsant effects of sinomenine in kainate rat model of temporal lobe epilepsy: involvement of oxidative stress, inflammation and pyroptosis. J Chem Neuroanat 108(101800). https://doi.org/10.1016/j.jchemneu.2020.101800

  75. Xia S, Yang P, Li F, Yu Q, Kuang W, Zhu Y, Lu J, Wu H et al (2021) Chaihu-Longgu-Muli Decoction exerts an antiepileptic effect in rats by improving pyroptosis in hippocampal neurons. J Ethnopharmacol 270(113794). https://doi.org/10.1016/j.jep.2021.113794

  76. Feng YZ, Leblanc MH, Regunathan S (2005) Agmatine reduces extracellular glutamate during pentylenetetrazole-induced seizures in rat brain: a potential mechanism for the anticonvulsive effects. Neurosci Lett 390(3):129–133. https://doi.org/10.1016/j.neulet.2005.08.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Li X, Lin J, Hua Y, Gong J, Ding S, Du Y, Wang X, Zheng R et al (2021) Agmatine alleviates epileptic seizures and hippocampal neuronal damage by inhibiting gasdermin D-mediated pyroptosis. Front Pharmacol 12. https://doi.org/10.3389/fphar.2021.627557

  78. Xia L, Liu L, Cai Y, Zhang Y, Tong F, Wang Q, Ding J, Wang X (2022) Inhibition of gasdermin D-mediated pyroptosis attenuates the severity of seizures and astroglial damage in kainic acid-induced epileptic mice. Front Pharmacol 12(751644). https://doi.org/10.3389/fphar.2021.751644

  79. Li YZ, Zhang L, Liu Q, Bian HT, Cheng WJ (2020) The effect of single nucleotide polymorphisms of STAT3 on epilepsy in children. Eur Rev Med Pharmacol Sci 24(2):837–842

    PubMed  Google Scholar 

  80. Jiang Q, Tang G, Zhong X, Ding D, Wang H, Li J (2021) Role of Stat3 in NLRP3/caspase-1-mediated hippocampal neuronal pyroptosis in epileptic mice. Synapse 75(e2222112). https://doi.org/10.1002/syn.22221

  81. Yang Z, Shi J, Chen L, Fu C, Shi D, Qu H (2022) Role of pyroptosis and ferroptosis in the progression of atherosclerotic plaques. Front Cell Dev Biol 10(811196). https://doi.org/10.3389/fcell.2022.811196

  82. Qiu Z, Zhang H, Xia M, Gu J, Guo K, Wang H, Miao C (2023) Programmed death of microglia in Alzheimer’s disease: autophagy, ferroptosis, and pyroptosis. J Prev Alzheimers Dis 10(1):95–103. https://doi.org/10.14283/jpad.2023.3

  83. Kadamur G, Ross EM (2013) Mammalian phospholipase C. In: Julius D (ed) Annual Review of Physiology Annual Reviews 75:127–154. https://doi.org/10.1146/annurev-physiol-030212-183750

  84. Kang R, Zeng L, Zhu S, Xie Y, Liu J, Wen Q, Cao L, Xie M et al (2018) Lipid peroxidation drives gasdermin D-mediated pyroptosis in lethal polymicrobial sepsis. Cell Host Microbe 24(1):97. https://doi.org/10.1016/j.chom.2018.05.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Capece D, Verzella D, Flati I, Arboretto P, Cornice J, Franzoso G (2022) NF-κB: blending metabolism, immunity, and inflammation. Trends Immunol 43(9):757–775. https://doi.org/10.1016/j.it.2022.07.004

    Article  CAS  PubMed  Google Scholar 

  86. Heneka MT, Kummer MP, Latz E (2014) Innate immune activation in neurodegenerative disease. Nat Rev Immunol 14(7):463–477. https://doi.org/10.1038/nri3705

    Article  CAS  PubMed  Google Scholar 

  87. Liu J, Wu S, Zhang H, Kuang F (2018) Inhibition of MyD88 signaling skews microglia/macrophage polarization and attenuates neuronal apoptosis in the hippocampus after status epilepticus in mice. Neurotherapeutics 15(4):1093–1111. https://doi.org/10.1007/s13311-018-0653-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kamasak T, Dilber B, Yaman SO, Durgut BD, Kurt T, Coban E, Arslan EA, Sahin S et al (2020) HMGB-1, TLR4, IL-1R1, TNF-α, and IL-1β: novel epilepsy markers? Epileptic Disord 22(2):183–193. https://doi.org/10.1684/epd.2020.1155

    Article  PubMed  Google Scholar 

  89. Xu D, Chu M, Chen Y, Fang Y, Wang J, Zhang X, Xu F (2023) Identification and verification of ferroptosis-related genes in the pathology of epilepsy: insights from CIBERSORT algorithm analysis. Front Neurol 14(1275606). https://doi.org/10.3389/fneur.2023.1275606

  90. Chen S, Jin X, He T, Zhang M, Xu H (2023) Identification of ferroptosis-related genes in acute phase of temporal lobe epilepsy based on bioinformatic analysis. BMC Genomics 24(6751). https://doi.org/10.1186/s12864-023-09782-8

  91. Yang J, Jia Z, Xiao Z, Zhao J, Lu Y, Chu L, Shao H, Pei L et al (2021) Baicalin rescues cognitive dysfunction, mitigates neurodegeneration, and exerts anti-epileptic effects through activating TLR4/MYD88/caspase-3 pathway in rats. Drug Des Dev Ther 15:3163–3180. https://doi.org/10.2147/DDDT.S314076

    Article  Google Scholar 

  92. Zhu X, Liu J, Chen O, Xue J, Huang S, Zhu W, Wang Y (2019) Neuroprotective and anti-inflammatory effects of isoliquiritigenin in kainic acid-induced epileptic rats via the TLR4/MYD88 signaling pathway. Inflammopharmacology 27(6):1143–1153. https://doi.org/10.1007/s10787-019-00592-7

    Article  CAS  PubMed  Google Scholar 

  93. Wen Q, Liu J, Kang R, Zhou B, Tang D (2019) The release and activity of HMGB1 in ferroptosis. Biochem Biophys Res Commun 510(2):278–283. https://doi.org/10.1016/j.bbrc.2019.01.090

    Article  CAS  PubMed  Google Scholar 

  94. Zhang S, Chen F, Zhai F, Liang S (2022) Role of HMGB1/TLR4 and IL-1β/IL-1R1 signaling pathways in epilepsy. Front Neurol 13(904225). https://doi.org/10.3389/fneur.2022.904225

  95. Terrone G, Balosso S, Pauletti A, Ravizza T, Vezzani A (2020) Inflammation and reactive oxygen species as disease modifiers in epilepsy. Neuropharmacology 167(107742). https://doi.org/10.1016/j.neuropharm.2019.107742

  96. Zhu K, Zhu X, Sun S, Yang W, Liu S, Tang Z, Zhang R, Li J et al (2021) Inhibition of TLR4 prevents hippocampal hypoxic-ischemic injury by regulating ferroptosis in neonatal rats. Exp Neurol 345(113828). https://doi.org/10.1016/j.expneurol.2021.113828

  97. Wu F, Wang Z, Gu J, Ge J, Liang Z, Qin Z (2013) p38MAPK/p53-Mediated Bax induction contributes to neurons degeneration in rotenone-induced cellular and rat models of cParkinson’s disease. Neurochem Int 63(3):133–140. https://doi.org/10.1016/j.neuint.2013.05.006

    Article  CAS  PubMed  Google Scholar 

  98. Liu Y, Gu W (2022) p53 in ferroptosis regulation: the new weapon for the old guardian. Cell Death Differ 29(5SI):895–910. https://doi.org/10.1038/s41418-022-00943-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Li Y, Zhang L, Tang J, Yang X, Huang J, Zhu T, Zhao F, Li S et al (2019) Role of toll-like receptor 4 in the regulation of the cell death pathway and neuroinflammation. Brain Res Bull 148:79–90. https://doi.org/10.1016/j.brainresbull.2019.03.015

    Article  CAS  PubMed  Google Scholar 

  100. Chen G, Li L, Tao H (2021) Bioinformatics identification of ferroptosis-related biomarkers and therapeutic compounds in ischemic stroke. Front Neurol 12(745240). https://doi.org/10.3389/fneur.2021.745240

Download references

Funding

This work was supported by the National Natural Science Foundation of China Youth Science Foundation Project (81801311), grants from the research funds of West China Second University Hospital (No. KL115 and KL072), the National Natural Science Foundation of China (81971433, 82271749).

Author information

Authors and Affiliations

Authors

Contributions

The contribution of each author in this manuscript is as follows: Fan Feng drafted the initial manuscript and revised the manuscript. Qianyun Cai modified the manuscript. Rong Luo, Dezhi Mu, and Qianyun Cai reviewed and revised the manuscript.

Corresponding author

Correspondence to Qianyun Cai.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, F., Luo, R., Mu, D. et al. Ferroptosis and Pyroptosis in Epilepsy. Mol Neurobiol (2024). https://doi.org/10.1007/s12035-024-04018-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-024-04018-6

Keywords

Navigation