Advanced Immunolabeling Method for Optical Volumetric Imaging Reveals Dystrophic Neurites of Dopaminergic Neurons in Alzheimer’s Disease Mouse Brain

Author:

Baek Soonbong,Jang Jaemyung,Jung Hyun Jin,Lee Hyeyoung,Choe YoungshikORCID

Abstract

AbstractOptical brain clearing combined with immunolabeling is valuable for analyzing molecular tissue structures, including complex synaptic connectivity. However, the presence of aberrant lipid deposition due to aging and brain disorders poses a challenge for achieving antibody penetration throughout the entire brain volume. Herein, we present an efficient brain-wide immunolabeling method, the immuno-active clearing technique (iACT). The treatment of brain tissues with a zwitterionic detergent, specifically SB3-12, significantly enhanced tissue permeability by effectively mitigating lipid barriers. Notably, Quadrol treatment further refines the methodology by effectively eliminating residual detergents from cleared brain tissues, subsequently amplifying volumetric fluorescence signals. Employing iACT, we uncover disrupted axonal projections within the mesolimbic dopaminergic (DA) circuits in 5xFAD mice. Subsequent characterization of DA neural circuits in 5xFAD mice revealed proximal axonal swelling and misrouting of distal axonal compartments in proximity to amyloid-beta plaques. Importantly, these structural anomalies in DA axons correlate with a marked reduction in DA release within the nucleus accumbens. Collectively, our findings highlight the efficacy of optical volumetric imaging with iACT in resolving intricate structural alterations in deep brain neural circuits. Furthermore, we unveil the compromised integrity of DA pathways, contributing to the underlying neuropathology of Alzheimer’s disease. The iACT technique thus holds significant promise as a valuable asset for advancing our understanding of complex neurodegenerative disorders and may pave the way for targeted therapeutic interventions. Graphical Abstract The axonal projection of DA neurons in the septum and the NAc showed dystrophic phenotypes such as growth cone-like enlargement of the axonal terminus and aggregated neurites. Brain-wide imaging of structural defects in the neural circuits was facilitated with brain clearing and antibody penetration assisted with SB3-12 and Quadrol pre-treatment. The whole volumetric imaging process could be completed in a week with the robust iACT method. Created with https://www.biorender.com/

Funder

KBRI

NRF KOREA

Publisher

Springer Science and Business Media LLC

Subject

Neuroscience (miscellaneous),Cellular and Molecular Neuroscience,Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3