Acoustic prison for single live cell 3D multi-imaging enabled by light-sheet microscopy

Author:

Richard Cynthia,Vargas-Ordaz Erick J.,Cadarso Victor J.,Neild Adrian

Abstract

AbstractHaving a system capable of obtaining high resolution, quantitative, subcellular information of individual live cells through imaging, while minimizing cell damage, is of great importance in many fields of research. In recent years, optofluidic light-sheet fluorescent microscopy (LSFM) has emerged as a powerful tool providing a low photo-toxic imaging method utilising the fluidic environment offered by microfluidics. Here, the benefits of LSFM were integrated with an acoustic single cell prison for precise single cell handling and 3D multi-imaging in a semi-automated manner. The compact, monolithic, acousto-optofluidic platform employed standing surface acoustic waves (SSAWs) to sequentially trap an individual cell on either side of an imaging region, which gathered planar, cross-sectional images of the cell. A cytoplasmic stain was utilised to not only visualize the cell trajectory throughout the imaging process, but also to verify the cell viability post-acoustic exposure. A mitochondrial stain was also used to better demonstrate the resolution capabilities of the device. Through post-image processing, 3D volumetric images of the cell were reconstructed and the results between the first and second rounds of imaging were directly comparable. Furthermore, the acoustic prison advantageously positions the cells in the upper region of the channel, enabling the ability to accurately compare temporal changes in cell morphology; a capability that can lead to advancements in therapeutics and drug delivery to access responses of cells to stimuli over time.

Funder

National Health and Medical Research Council

Monash University

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3