Abstract
AbstractKidney disease is one of the leading causes of morbidity worldwide, emphasizing the importance for physiologically accurate disease models. With most of the approved renal drugs failing to perform as well in human clinical trials as they did in animal testing, it is imperative that new and improved human-based models are developed to test these potential therapeutics. One option is to use patient derived cell lines, grown in both two-dimensional (2D) and three-dimensional (3D) structures, known as spheroids and organoids. Despite their contributions to the field, the lack of physiological accuracy, including the absence of fluid flow, and mechanistic effects in these 2D and 3D models means there is still room for improvement. Organ-on-a-chip (OOAC) technology offers itself as a potential candidate model to overcome these limitations. Over recent years OOAC technology has grown in popularity, with multiple organ systems, including lung, liver, and kidney described in the literature. In this review, traditional human cellular based models, including monolayer, spheroid and organoid models will be discussed. Human kidney-on-a-chip models will also be discussed, while exploring the advantages and potential limitations of this rapidly emerging field for the study of human kidney disease and drug testing.
Funder
MRC DiMeN Doctoral Training Partnership
Northern Counties Kidney Research Fund
Kidney Research UK
Publisher
Springer Science and Business Media LLC
Subject
Materials Chemistry,Condensed Matter Physics,Electronic, Optical and Magnetic Materials
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献