Recent advances in cancer-on-a-chip tissue models to dissect the tumour microenvironment

Author:

Seaman Kimberly,Sun Yu,You LidanORCID

Abstract

AbstractThree-dimensional cancer-on-a-chip tissue models aim to replicate the key hallmarks of the tumour microenvironment and allow for the study of dynamic interactions that occur during tumour progression. Recently, complex cancer-on-a-chip models incorporating multiple cell types and biomimetic extracellular matrices have been developed. These models have generated new research directions in engineering and medicine by allowing for the real-time observation of cancer-host cell interactions in a physiologically relevant microenvironment. However, these cancer-on-a-chip models have yet to overcome limitations including the complexity of device manufacturing, the selection of optimal materials for preclinical drug screening studies, long-term microfluidic cell culture as well as associated challenges, and the technical robustness or difficulty in the use of these microfluidic platforms. In this review, an overview of the tumour microenvironment, its unique characteristics, and the recent advances of cancer-on-a-chip models that recapitulate native features of the tumour microenvironment are presented. The current challenges that cancer-on-a-chip models face and the future directions of research that are expected to be seen are also discussed. Graphical Abstract

Funder

National Sciences and Engineering Research Council of Canada

Shanghai Jiao Tong University

Publisher

Springer Science and Business Media LLC

Reference147 articles.

1. “Cancer.” World Health Organization, World Health Organization, 2021. https://www.who.int/health-topics/cancer#tab=tab_1. Accessed 21 Feb 2023.

2. “What Is Cancer?” National Cancer Institute, National Institutes of Health, 2021. https://www.cancer.gov/about-cancer/understanding/what-is-cancer#:~:text=Cancer%20is%20a%20disease%20in,up%20of%20trillions%20of%20cells. Accessed 21 Feb 2023.

3. Dagogo-Jack I, Shaw AT. Tumour heterogeneity and resistance to cancer therapies. Nat Rev Clin Oncol. 2018;15:81–94. https://doi.org/10.1038/nrclinonc.2017.166.

4. Zhang A, et al. Tumor heterogeneity reshapes the tumor microenvironment to influence drug resistance. Int J Biol Sci. 2022;18(7):3019–33. https://doi.org/10.7150/ijbs.72534.

5. Ramos A, et al. Battling Chemoresistance in Cancer: Root Causes and Strategies to Uproot Them. Int J Mol Sci. 2021;22(17):9451. https://doi.org/10.3390/ijms22179451.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3