Choosing the right tool: Leveraging of plant genetic resources in wheat (Triticum aestivum L.) benefits from selection of a suitable genomic prediction model

Author:

Berkner Marcel O.ORCID,Schulthess Albert W.ORCID,Zhao YushengORCID,Jiang YongORCID,Oppermann MarkusORCID,Reif Jochen C.ORCID

Abstract

Abstract Key message Genomic prediction of genebank accessions benefits from the consideration of additive-by-additive epistasis and subpopulation-specific marker effects. Abstract Wheat (Triticum aestivum L.) and other species of the Triticum genus are well represented in genebank collections worldwide. The substantial genetic diversity harbored by more than 850,000 accessions can be explored for their potential use in modern plant breeding. Characterization of these large number of accessions is constrained by the required resources, and this fact limits their use so far. This limitation might be overcome by engaging genomic prediction. The present study compared ten different genomic prediction approaches to the prediction of four traits, namely flowering time, plant height, thousand grain weight, and yellow rust resistance, in a diverse set of 7745 accession samples from Germany’s Federal ex situ genebank at the Leibniz Institute of Plant Genetics and Crop Plant Research in Gatersleben. Approaches were evaluated based on prediction ability and robustness to the confounding influence of strong population structure. The authors propose the wide application of extended genomic best linear unbiased prediction due to the observed benefit of incorporating additive-by-additive epistasis. General and subpopulation-specific additive ridge regression best linear unbiased prediction, which accounts for subpopulation-specific marker-effects, was shown to be a good option if contrasting clusters are encountered in the analyzed collection. The presented findings reaffirm that the trait’s genetic architecture as well as the composition and relatedness of the training set and test set are major driving factors for the accuracy of genomic prediction.

Funder

Bundesministerium für Bildung und Forschung

European Union’s Horizon 2020 research and innovation programme

Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK)

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Agronomy and Crop Science,General Medicine,Biotechnology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3