Automated Rib Fracture Detection on Chest X-Ray Using Contrastive Learning

Author:

Sun Hongbiao,Wang Xiang,Li Zheren,Liu Aie,Xu Shaochun,Jiang Qinling,Li Qingchu,Xue Zhong,Gong Jing,Chen Lei,Xiao Yi,Liu Shiyuan

Abstract

Abstract To develop a deep learning-based model for detecting rib fractures on chest X-Ray and to evaluate its performance based on a multicenter study. Chest digital radiography (DR) images from 18,631 subjects were used for the training, testing, and validation of the deep learning fracture detection model. We first built a pretrained model, a simple framework for contrastive learning of visual representations (simCLR), using contrastive learning with the training set. Then, simCLR was used as the backbone for a fully convolutional one-stage (FCOS) objective detection network to identify rib fractures from chest X-ray images. The detection performance of the network for four different types of rib fractures was evaluated using the testing set. A total of 127 images from Data-CZ and 109 images from Data-CH with the annotations for four types of rib fractures were used for evaluation. The results showed that for Data-CZ, the sensitivities of the detection model with no pretraining, pretrained ImageNet, and pretrained DR were 0.465, 0.735, and 0.822, respectively, and the average number of false positives per scan was five in all cases. For the Data-CH test set, the sensitivities of three different pretraining methods were 0.403, 0.655, and 0.748. In the identification of four fracture types, the detection model achieved the highest performance for displaced fractures, with sensitivities of 0.873 and 0.774 for the Data-CZ and Data-CH test sets, respectively, with 5 false positives per scan, followed by nondisplaced fractures, buckle fractures, and old fractures. A pretrained model can significantly improve the performance of the deep learning-based rib fracture detection based on X-ray images, which can reduce missed diagnoses and improve the diagnostic efficacy.

Funder

National Natural Science Foundation of China

Contract grant sponsor: Pyramid Talent Project of Shanghai Changzheng Hospital

Shenkang capacity enhancement project

Military Commission surface project

National Key Research and Development Program

National Health Commission Radiological Imaging Database Construction Project

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3