Next generation edible nanoformulations for improving post-harvest shelf-life of citrus fruits

Author:

Kumar Nishant,Upadhyay Ashutosh,Shukla Shruti,Bajpai Vivek K.,Kieliszek MarekORCID,Yadav Ajay,Kumaravel Vighnesh

Abstract

AbstractCitrus is one of the most widely grown fruits globally, because of its remarkable organoleptic features, nutritional content and bioactive ingredients. Microbial spoilage and other factors such as physiological disorder, mechanical and physical damage, and fruit senescence are the major factors of postharvest loss to citrus industry. The postharvest losses in citrus are directly have negative impcats on the economy, environment and healths due to production of carbon emission gases. The fungal pathogens such as Penicillium digitatum, Penicillium italicum and Geotrichum candidum are the major cause of postharvest spoilage in citrus fruits. These pathogens produce different mycotoxins such as citrinin, patulin, and tremorgenic. These mycotoxins are secondary metabolites of molds; they employ toxic effects on the healths. The acuteness of mytoxin on toxicity is dependings on the extent exposure, age and nutritional status of individual. The toxicity of mytoxins are directly related to the food safety and health concern including damage DNA, kidney damage, mutation in RNA/DNA, growth impairment in childs and immune system etc. Several attempts have been made to extend the shelf-life of citrus fruits by controlling physiological decay and fungal growth which has got limited success. In recent years, nanotechnology has emerged as a new strategy for shelf life prevention of citrus fruits. The biopolymer based nano-formulations functionalized with active compounds have shown promising results in maintaining the postharvest quality attributes of fruits and vegetables by retarding the moisture loss and oxidation. This review exclusively discloses the postharvest losses in citrus fruits and their causes. In addition, the use of biopolymer based nanoformulations functionalized with active agents and their developing technologies have been also discussed briefly. The effects of nano-formulation technologies on the postharvest shelf life of citrus is also described.The finding of this review also suggest that the natural biopolymers and bioactive compounds can be used for developing nanoformulations for extending the shelf-life of citrus fruits by minimizing the fungal growth and as an alternatives of fungicides.

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Safety, Risk, Reliability and Quality,General Chemical Engineering,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3