On the (in)consistency of perturbation theory at finite temperature

Author:

Lowdon PeterORCID,Philipsen OweORCID

Abstract

Abstract A well-known difficulty of perturbative approaches to quantum field theory at finite temperature is the necessity to address theoretical constraints that are not present in the vacuum theory. In this work, we use lattice simulations of scalar correlation functions in massive ϕ4 theory to analyse the extent to which these constraints affect the perturbative predictions. We find that the standard perturbative predictions deteriorate even in the absence of infrared divergences at relatively low temperatures, and that this is directly connected to the analytic structure of the propagators used in the expansion. This suggests that the incorporation of non-perturbative thermal effects in the propagators is essential for a consistent perturbative formulation of scalar quantum field theories at finite temperature. By utilising the spectral constraints imposed on finite-temperature correlation functions, we explore how these effects manifest themselves in the lattice data, and discuss why the presence of distinct thermoparticle excitations provides a potential resolution to these issues.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3