Deoxygenation following coral spawning and low-level thermal stress trigger mass coral mortality at Coral Bay, Ningaloo Reef

Author:

Richards Zoe T.ORCID,Haines Lewis,Ross ClaireORCID,Preston Sophie,Matthews Troy,Terriaca Anthony,Black Ethan,Lewis Yvette,Mannolini Josh,Dean Patrick,Middleton Vincent,Saunders BenORCID

Abstract

AbstractOxygen depletion is well recognized for its role in the degradation of tropical coral reefs. Extreme acute hypoxic events that lead to localized mass mortality and the formation of ‘dead zones’ (a region where few or no organisms can survive due to a lack of oxygen) are particularly concerning as they can result in wide-ranging losses of biodiversity, ecosystem productivity and functioning, economic prosperity, and wellbeing. In March of 2022, the annual coral spawning event at Bills Bay (Coral Bay, Ningaloo Reef, Western Australia) coincided with elevated seawater temperature, calm weather conditions and a flood tide resulting in coral spawn becoming trapped in Bills Bay. Immediately after, there was a mass fish kill, which is believed to have been caused by local eutrophication resulting in severe oxygen depletion. The impact the deoxygenation and thermal stress event had on benthic communities has not yet been quantified; hence, the principal aim of this study is to document the extent of change that occurred in the benthic communities before and after the 2022 coral spawning event over a spatial gradient from the nearshore to mid-reef. Percent coral cover in the Bay decreased from 55.62 ± 2.26% in 2016–2018 and 70.44 ± 5.24% in 2021 to 1.16 ± 0.51% in 2022. Over the same period, the percent cover of turf algae increased from 27.40 ± 2.00% in 2016–2018 and 24.66 ± 6.67% in 2021 to 78.80 ± 3.06% in 2022, indicating a dramatic phase shift occurred at Bills Bay. The abundance of healthy coral colonies recorded on replicated belt transects at nine sites declined from 3452 healthy individuals in 2018 to 153 individuals in 2022 and coral generic richness decreased by 84.61%, dropping from 26 genera in 2018 to 4 genera in 2022. Previously dominant genera such as Acropora,Montipora and Echinopora, were extirpated from survey sites. Isolated colonies of massive Porites spp. and encrusting Cyphastrea sp. survived the event and understanding the mechanisms underpinning their greater survivorship is an important area of future research. Long-term monitoring is recommended to track the community recovery process and improve our understanding of the longer-term implications of this acute mortality event on the ecological, socio-economic and cultural values of Ningaloo Reef.

Funder

Curtin University of Technology

Curtin University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3