Electric field-driven building blocks for introducing multiple gradients to hydrogels

Author:

Xu Gang,Ding Zhaozhao,Lu Qiang,Zhang Xiaoyi,Zhou Xiaozhong,Xiao Liying,Lu Guozhong,Kaplan David L

Abstract

AbstractGradient biomaterials are considered as preferable matrices for tissue engineering due to better simulation of native tissues. The introduction of gradient cues usually needs special equipment and complex process but is only effective to limited biomaterials. Incorporation of multiple gradients in the hydrogels remains challenges. Here, beta-sheet rich silk nanofibers (BSNF) were used as building blocks to introduce multiple gradients into different hydrogel systems through the joint action of crosslinking and electric field. The blocks migrated to the anode along the electric field and gradually stagnated due to the solution-hydrogel transition of the systems, finally achieving gradient distribution of the blocks in the formed hydrogels. The gradient distribution of the blocks could be tuned easily through changing different factors such as solution viscosity, which resulted in highly tunable gradient of mechanical cues. The blocks were also aligned under the electric field, endowing orientation gradient simultaneously. Different cargos could be loaded on the blocks and form gradient cues through the same crosslinking-electric field strategy. The building blocks could be introduced to various hydrogels such as Gelatin and NIPAM, indicating the universality. Complex niches with multiple gradient cues could be achieved through the strategy. Silk-based hydrogels with suitable mechanical gradients were fabricated to control the osteogenesis and chondrogenesis. Chondrogenic-osteogenic gradient transition was obtained, which stimulated the ectopic osteochondral tissue regeneration in vivo. The versatility and highly controllability of the strategy as well as multifunction of the building blocks reveal the applicability in complex tissue engineering and various interfacial tissues.

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Drug Discovery,Biochemistry,Biotechnology

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3