1. Aaronson, D., Faber, J., Hartley, D., Mazumder, B., & Sharkey, P. (2021). The long-run effects of the 1930s holc “redlining’’ maps on place-based measures of economic opportunity and socioeconomic success. Regional Science and Urban Economics, 86, 103622.
2. Angwin, J., Larson, J., Mattu, S., & Kirchner, L. (2016). Machine bias: There’s software used across the country to predict future criminals and it’s biased against blacks. ProPublica https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing.
3. Barabas, C., Bowers, J., Buolamwini, J., Benjamin, R., Broussard, M., Constanza-Chock, S., Crawford, K., Doyle, C., Harcourt, B.E., Hopkins, B., Minow, M., Ochigame, R., Priyadarshi, T., Schneier, B., Selbin, J., Dinakar, K., Gebru, T., Helreich, S., Ito, J., O’Neil, C., Paxson, H., Richardson, R., Schultz, J., & Southerland, V.M. (2019). Technical flaws of pretrial risk assessment raise grave concerns.
4. Barocas, S., & Selbst, A. D. (2016). Big data’s disparate impact. California Law Review, 104(3), 671–732.
5. Berk, R., Shahin Jabbari, H. H., Kearns, M., & Roth, A. (2021). Fairness in criminal justice risk assessment: The state of the art. Sociological Methods and Research, 50(1), 3–44.