Visuo-haptic object perception for robots: an overview

Author:

Navarro-Guerrero NicolásORCID,Toprak SibelORCID,Josifovski JosipORCID,Jamone LorenzoORCID

Abstract

AbstractThe object perception capabilities of humans are impressive, and this becomes even more evident when trying to develop solutions with a similar proficiency in autonomous robots. While there have been notable advancements in the technologies for artificial vision and touch, the effective integration of these two sensory modalities in robotic applications still needs to be improved, and several open challenges exist. Taking inspiration from how humans combine visual and haptic perception to perceive object properties and drive the execution of manual tasks, this article summarises the current state of the art of visuo-haptic object perception in robots. Firstly, the biological basis of human multimodal object perception is outlined. Then, the latest advances in sensing technologies and data collection strategies for robots are discussed. Next, an overview of the main computational techniques is presented, highlighting the main challenges of multimodal machine learning and presenting a few representative articles in the areas of robotic object recognition, peripersonal space representation and manipulation. Finally, informed by the latest advancements and open challenges, this article outlines promising new research directions.

Funder

Deutsches Forschungszentrum für Künstliche Intelligenz GmbH (DFKI)

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Robotics for poultry farming: Challenges and opportunities;Computers and Electronics in Agriculture;2024-11

2. VT-VT: a slip detection model for transformer-based visual-tactile fusion;Advanced Robotics;2024-09-03

3. Towards Assessing Compliant Robotic Grasping From First-Object Perspective via Instrumented Objects;IEEE Robotics and Automation Letters;2024-07

4. Optimizing BioTac Simulation for Realistic Tactile Perception;2024 International Joint Conference on Neural Networks (IJCNN);2024-06-30

5. M2CURL: Sample-Efficient Multimodal Reinforcement Learning via Self-Supervised Representation Learning for Robotic Manipulation;2024 21st International Conference on Ubiquitous Robots (UR);2024-06-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3