An AI-Based Method for Estimating the Potential Runout Distance of Post-Seismic Debris Flows

Author:

Qiu Chenchen,Su Lijun,Bian Congchao,Zhao Bo,Geng Xueyu

Abstract

AbstractThe widely distributed sediments following an earthquake presents a continuous threat to local residential areas and infrastructure. These materials become more easily mobilized due to reduced rainfall thresholds. Before establishing an effective management plan for debris flow hazards, it is crucial to determine the potential reach of these sediments. In this study, a deep learning-based method—Dual Attention Network (DAN)—was developed to predict the runout distance of potential debris flows after the 2022 Luding Earthquake, taking into account the topography and precipitation conditions. Given that the availability of reliable precipitation data remains a challenge, attributable to the scarcity of rain gauge stations and the relatively coarse resolution of satellite-based observations, our approach involved three key steps. First, we employed the DAN model to refine the Global Precipitation Measurement (GPM) data, enhancing its spatial and temporal resolution. This refinement was achieved by leveraging the correlation between precipitation and regional environment factors (REVs) at a seasonal scale. Second, the downscaled GPM underwent calibration using observations from rain gauge stations. Third, mean absolute error (MAE), mean square error (MSE), and root mean square error (RMSE) were employed to evaluate the performance of both the downscaling and calibration processes. Then the calibrated precipitation, catchment area, channel length, average channel gradient, and sediment volume were selected to develop a prediction model based on debris flows following the Wenchuan Earthquake. This model was applied to estimate the runout distance of potential debris flows after the Luding Earthquake. The results show that: (1) The calibrated GPM achieves an average MAE of 1.56 mm, surpassing the MAEs of original GPM (4.25 mm) and downscaled GPM (3.83 mm); (2) The developed prediction model reduces the prediction error by 40 m in comparison to an empirical equation; (3) The potential runout distance of debris flows after the Luding Earthquake reaches 0.77 km when intraday rainfall is 100 mm, while the minimum distance value is only 0.06 km. Overall, the developed model offers a scientific support for decision makers in taking reasonable measurements for loss reduction caused by post-seismic debris flows.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3