A new method to improve RF safety of implantable medical devices using inductive coupling at 3.0 T MRI

Author:

Park Bu S.ORCID,Guag Joshua W.,Jeong Hongbae,Rajan Sunder S.,McCright Brent

Abstract

Abstract Objective To enhance RF safety when implantable medical devices are located within the body coil but outside the imaging region by using a secondary resonator (SR) to reduce electric fields, the corresponding specific absorption rate (SAR), and temperature change during MRI. Materials and methods This study was conducted using numerical simulations with an American Society for Testing and Materials (ASTM) phantom and adult human models of Ella and Duke from Virtual Family Models, along with corresponding experimental results of temperature change obtained using the ASTM phantom. The circular SR was designed with an inner diameter of 150 mm and a width of 6 mm. Experimental measurements were carried out using a 3 T Medical Implant Test System (MITS) body coil, electromagnetic (EM) field mapping probes, and an ASTM phantom. Results The magnitudes of B1+ (|B1+|) and SAR1g were reduced by 15.2% and 5.85% within the volume of interest (VoI) of an ASTM phantom, when a SR that generates opposing electromagnetic fields was utilized. Likewise, the Δ|B1+| and ΔSAR1g were reduced by up to 56.7% and 57.5% within the VoI of an Ella model containing a copper rod when an opposing SR was used. Conclusion A novel method employing the designed SR, which generates opposing magnetic fields to partially shield a sample, has been proposed to mitigate the risk of induced-RF heating at the VoI through numerical simulations and corresponding experiments under various conditions at 3.0 T.

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3