Nonuniform sliding-window reconstruction for accelerated dual contrast agent quantification with MR fingerprinting

Author:

Marriott Anna,Rioux James,Brewer KimberlyORCID

Abstract

Abstract Objective MR fingerprinting (MRF) can enable preclinical studies of cell tracking by quantifying multiple contrast agents simultaneously, but faster scan times are required for in vivo applications. Sliding window (SW)-MRF is one option for accelerating MRF, but standard implementations are not sufficient to preserve the accuracy of T2*, which is critical for tracking iron-labelled cells in vivo. Purpose To develop a SW approach to MRF which preserves the T2* accuracy required for accelerated concentration mapping of iron-labelled cells on single-channel preclinical systems. Methods A nonuniform SW was applied to the MRF sequence and dictionary. Segments of the sequence most sensitive to T2* were subject to a shorter window length, preserving the T2* sensitivity. Phantoms containing iron-labelled CD8+ T cells and gadolinium were used to compare 24× undersampled uniform and nonuniform SW-MRF parameter maps. Dual concentration maps were generated for both uniform and nonuniform MRF and compared. Results Lin’s concordance correlation coefficient, compared to gold standard parameter values, was much greater for nonuniform SW-MRF than for uniform SW-MRF. A Wilcoxon signed-rank test showed no significant difference between nonuniform SW-MRF and gold standards. Nonuniform SW-MRF outperformed the uniform SW-MRF concentration maps for all parameters, providing a balance between T2* sensitivity of short window lengths, and SNR of longer window lengths. Conclusions Nonuniform SW-MRF improves the accuracy of matching compared to uniform SW-MRF, allowing higher accelerated concentration mapping for preclinical systems.

Funder

NSERC Discovery grant

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3