Association between air pollution and COVID-19 mortality and morbidity

Author:

Semczuk-Kaczmarek KarolinaORCID,Rys-Czaporowska Anna,Sierdzinski Janusz,Kaczmarek Lukasz Dominik,Szymanski Filip Marcin,Platek Anna Edyta

Abstract

AbstractCoronavirus disease (COVID-19) pandemic is affecting the world unevenly. One of the highest numbers of cases were recorded in the most polluted regions worldwide. The risk factors for severe COVID-19 include diabetes, cardiovascular, and respiratory diseases. It has been known that the same disease might be worsened by chronic exposure to air pollution. The study aimed to determine whether long-term average exposure to air pollution is associated with an increased risk of COVID-19 cases and deaths in Poland. The cumulative number of COVID-19 cases and deaths for each voivodeship (the main administrative level of jurisdictions) in Poland were collected from March 4, 2020, to May 15, 2020. Based on the official data published by Chief Inspectorate of Environmental Protection voivodeship-level long-term exposure to main air pollution: PM2.5, PM10, NO2, SO2, O3 (averaged from 2013 to 2018) was established. There were statistically significant correlation between COVID-19 cases (per 100,000 population) and annual average concentration of PM2.5 (R2 = 0.367, p = 0.016), PM10 (R2 = 0.415, p = 0.009), SO2 (R2 = 0.489, p = 0.003), and O3 (R2 = 0.537, p = 0.0018). Moreover, COVID-19 deaths (per 100,000 population) were associated with annual average concentration of PM2.5 (R2 = 0.290, p = 0.038), NO2 (R2 = 0.319, p = 0.028), O3 (R2 = 0.452, p = 0.006). The long-term exposure to air pollution, especially PM2.5, PM10, SO2, NO2, O3 seems to play an essential role in COVID-19 prevalence and mortality. Long-term exposure to air pollution might increase the susceptibility to the infection, exacerbates the severity of SARS-CoV-2 infections, and worsens the patients’ prognosis. The study provides generalized and possible universal trends. Detailed analyzes of the phenomenon dedicated to a given region require taking into account data on comorbidities and socioeconomic variables as well as information about the long-term exposure to air pollution and COVID-19 cases and deaths at smaller administrative level of jurisdictions (community or at least district level).

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3