A comprehensive experimental study of municipal solid waste (MSW) as solid biofuel and as composite solid fuel in blends with lignite: quality characteristics, environmental impact, modeling, and energy cover

Author:

Vasileiadou AgapiORCID,Zoras Stamatis,Dimoudi Argiro

Abstract

Abstract Recently, coal power plants across Europe have been reopened. Alternative fuels are needed for energy autonomy purposes, for a smoother transition to the post-lignite era and for sustainable development. In this work, different categories of municipal solid wastes (MSW) and their blends with lignite were studied for their potential use as alternative fuels. Seventeen samples were studied using several techniques: gross calorific value (GCV), proximate analysis, ultimate analysis, ion chromatography, ash elemental analysis, thermogravimetric analysis, kinetic modeling and thermodynamic analysis. A determination of empirical chemical formulas was performed. Slagging/fouling potential was evaluated with various indices including modified indices that take into account ash production and GCV. Maximum emission factors were calculated and defined per produced MJ. Also, an environmental footprint index was developed regarding the environmental impact of solid wastes. The GCV experimental results were compared with those of twenty different empirical models. Moreover, several case studies were performed to evaluate the potential of covering the energy demands, with combustion of MSW, in Greece and Europe. The results showed that MSW as a primary/secondary fuel is an attractive solution considering the fact that it boasts better characteristics in comparison with lignite. Moreover, the environmental footprint index (EFIsw) of the MSW revealed a much smaller environmental impact. The high N content is not always translated to high emissions if NO is expressed per produced MJ (gNO/MJ). In addition, MSW can also be used as a significant contributor in covering energy demands regarding the energy recovery potential. Graphical abstract

Funder

State Scholarships Foundation

Democritus University of Thrace

Publisher

Springer Science and Business Media LLC

Subject

Energy (miscellaneous),Environmental Science (miscellaneous),Ecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3