Abstract
Abstract
Ocean acidification refers to a decrease in the pH of the world’s oceans from the oceanic uptake of human-derived atmospheric CO2. Low pH is known to decrease the calcification and survival of many calcifying invertebrates. Shallow, hard bottom communities along the Western Antarctic Peninsula often have incredibly large numbers of invertebrate mesograzers that shelter on and are mutualists with the dominant brown macroalgae. The common amphipod species Djerboa furcipes, Gondogeneia antarctica, and Prostebbingia gracilis were collected from the immediate vicinity of Palmer Station, Antarctica (64°46′S, 64°03′W) in January–February 2023 and maintained under three different pH treatments simulating ambient conditions (approximately pH 8.0), near-future conditions for 2100 (pH 7.7), and distant future conditions (pH 7.3) for 8 weeks. Molt number and mortality were monitored throughout the course of the experiment. After the 8 week exposure, amphipods were analyzed for their biochemical compositions including the Mg/Ca ratio of their exoskeletons. There was no significant difference in biochemical composition or survival among the pH treatments for any of the amphipod species. All three species, however, had significantly fewer total numbers of molts in the pH 7.3 treatment than in the ambient treatment. These results suggest that amphipods may be able to maintain their survival in decreased pH by reallocating energy into compensatory behaviors, such as acid–base regulation, and away from energy expensive processes like molting.
Funder
National Science Foundation
Publisher
Springer Science and Business Media LLC