Cultivating Salix Viminalis in Agricultural-Riparian Transition Areas to Mitigate Agriculturally Derived N2O Emissions from Potato Cropping Systems on Prince Edward Island

Author:

Wilts Holly D. M.,Burton David L.ORCID,Farooque Aitazaz A.

Abstract

AbstractCultivating shrub willow (Salix viminalis) in agricultural-riparian transition areas has been proposed as a strategy for mitigating elevated riparian nitrous oxide (N2O) emissions in agricultural regions. Nitrogen-based fertilizers are water soluble, enter riparian areas through surface runoff and subsurface lateral flow, and are converted to N2O by incomplete anaerobic denitrification. Salix buffer strips can intercept and recycle fertilizer nitrate (NO3) into their biomass and/or promote complete denitrification, reducing N2O emissions. We investigated the impact of Salix viminalis buffers on N2O emissions relative to grassed buffers and upslope cultivated fields in potato rotations at 5 research sites across Prince Edward Island (PEI), Canada. Greenhouse gas (N2O, CO2, CH4) flux at the soil-atmosphere interface was measured using non-steady-state static chambers in 2018 and 2019. NO3 exposure, soil temperature, and soil moisture content were quantified. Agricultural-riparian Salix significantly reduced N2O emissions even when high NO3 inputs occurred and following precipitation events. Mean cumulative seasonal reductions of 1.32 kg N2O–N ha−1 (− 0.02 to 6.16 kg N2O–N ha−1) were observed in Salix relative to cultivated fields; however, they were not significantly different than grass. The mean cumulative average global warming potential of Salix was 613 kg CO2e ha−1 lower than cultivated fields, with reductions of up to 2918 kg CO2e ha−1. Differences in N2O flux between vegetation types were the greatest influencing factor. No hot moments of N2O emission were observed in Salix following high rainfall events, which coincided with up to 95% decreases in N2O emissions in Salix relative to cultivated fields.

Funder

Agriculture and Agri-Food Canada

Publisher

Springer Science and Business Media LLC

Subject

Pollution,Water Science and Technology,Ecological Modeling,Environmental Chemistry,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3