Skip to main content
Log in

A trial for the design and optimization of pH-sensitive microparticles for intestinal delivery of cinnarizine

  • Clinical Research
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

The aim of this study was to formulate a microparticulate delivery system to deliver cinnarizine (CIN) directly to its site of absorption to overcome its low oral bioavailability. Enteric microparticles were prepared by varying ratios of pH-sensitive polymers (Eudragit L100 and Eudragit S100). A full 33 factorial experimental design was adopted to evaluate the effect of variables (CIN concentration as well as Eudragit’s concentration) on the tested parameters, namely, particle size (p.s.), drug entrapment efficiency (E.E.), and release efficiency (R.E.). Optimization was done using Design Expert® software to maximize E.E. and R.E. and minimize p.s. The optimized formula was characterized using scanning electron microscopy, differential scanning calorimetry, and X-ray diffractometry. In vivo studies conducted on human volunteers using LC-MS analysis revealed improved bioavailability of CIN-loaded enteric microparticles compared to the market product as detected from calculated pharmacokinetic parameters. This study reveals the usefulness of site-specific delivery of CIN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Godfraind T, Towse G, Nueten JM. Cinnarizine a selective calcium entry blocker. Drugs Today. 1982;18:27–42.

    CAS  Google Scholar 

  2. Singh BN. The mechanism of action of calcium antagonists relative to their clinical applications. Br J Clin Pharmacol. 1986;21:109–212.

    Article  Google Scholar 

  3. Cruz LJ, Olivera BM. Calcium channel antagonists, ω-conotoxin defines a new high affinity site. J Biol Chem. 1986;261:6230–3.

    CAS  PubMed  Google Scholar 

  4. Bipin P et al. Improvement of solubility of cinnarizine by using solid dispersion technique. Int Res J Pharm. 2010;1:127–31.

    Google Scholar 

  5. Scott LJ, Perry CM. Tramadol: a review of its use in perioperative pain. Drugs. 2000;60(1):139–76.

    Article  CAS  PubMed  Google Scholar 

  6. Alhnan MA, Murdan S, Basit AW. Encapsulation of poorly soluble basic drugs into enteric microparticles: a novel approach to enhance their oral bioavailability. Int J Pharm. 2011;416:55–60.

    Article  CAS  PubMed  Google Scholar 

  7. Mrsny RJ. Oral drug delivery research in Europe. J Control Release. 2012;161:247–53.

    Article  CAS  PubMed  Google Scholar 

  8. Chen M-C et al. A review of the prospects for polymeric nanoparticle platforms in oral insulin delivery. Biomaterials. 2011;32:9826–38.

    Article  CAS  PubMed  Google Scholar 

  9. Hunter AC et al. Polymeric particulate technologies for oral drug delivery and targeting: a pathophysiological perspective. Nanomed: Nanotechnol, Biol Med. 2012;8:S5–20.

    CAS  Google Scholar 

  10. Frey A et al. Role of the glycocalyx in regulating access of microparticles to apical plasma membranes of intestinal epithelial cells: implications for microbial attachment and oral vaccine targeting. J Exp Med. 1996;184:1045–59.

    Article  CAS  PubMed  Google Scholar 

  11. Plapied L et al. Fate of polymeric nanocarriers for oral drug delivery. Curr Opin Colloid Interface Sci. 2011;16:228–37.

    Article  CAS  Google Scholar 

  12. Florence AT. The oral absorption of micro- and nanoparticulates: neither exceptional nor unusual. Pharm Res. 1997;14:259–66.

    Article  CAS  PubMed  Google Scholar 

  13. Hussain N, Jani PU, Florence AT. Enhanced oral uptake of tomato lectin-conjugated nanoparticles in the rat. Pharm Res. 1997;14:613–8.

    Article  CAS  PubMed  Google Scholar 

  14. Dandagi PM et al. pH-sensitive mebeverine microspheres for colon delivery. Indian J Pharm Sci. 2009;71(4):464–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Trevaskis NL, Charman WN, Porter CJH. Targeted drug delivery to lymphatics: a route to site-specific immunomodulation? Mol Pharmacol. 2010;7:2297–309.

    Article  CAS  Google Scholar 

  16. Jain SK et al. Calcium silicate based microspheres of repaglinide for gastroretentive floating drug delivery: preparation and in vitro characterization. J Control Release. 2005;107(2):300–9.

    Article  CAS  PubMed  Google Scholar 

  17. Hollingsworth MA, Swanson BJ. Mucins in cancer: protection and control of the cell surface. Nat Rev Cancer. 2004;4:45–60.

    Article  CAS  PubMed  Google Scholar 

  18. Najmuddin M et al. Preparation and evaluation of flurbiprofen microcapsule for colonic drug delivery system. Int J Pharm Pharm Sci. 2010;2(2):83–7.

    CAS  Google Scholar 

  19. Mastiholimath VS et al. Time and pH dependent colon specific, pulsatile delivery of theophylline for nocturnal asthma. Int J Pharm. 2007;328:49–56.

    Article  CAS  PubMed  Google Scholar 

  20. Prakash K et al. Preparation and characterization of lamivudine microcapsules using various cellulose polymers. Trop J Pharm Res. 2007;6(4):841–7.

    Article  Google Scholar 

  21. Larsen AT et al. Oral bioavailability of cinnarizine in dogs: relation to SNEDDS droplet size, drug solubility and in vitro precipitation. Eur J Pharm Sci. 2013;48(1–2):339–50.

    Article  CAS  PubMed  Google Scholar 

  22. Abouelatta S.M. et al. Utilization of ionotropic gelation technique for bioavailability enhancement of cinnarizine: in-vitro optimization and in-vivo performance in human. Drug Deliv. 2015:1–11.

  23. Kietzmann D et al. pH-sensitive microparticles prepared by an oil/water emulsification method using n-butanol. Int J Pharm. 2009;375(1–2):61–6.

    Article  CAS  PubMed  Google Scholar 

  24. Nilkumhang S et al. Drug distribution in enteric microparticles. Int J Pharm. 2009;379:1–8.

    Article  CAS  PubMed  Google Scholar 

  25. Vijaya RD et al. Microencapsulation of FITC-BSA into poly (″-caprolactone) by a water-in-oil-in-oil solvent evaporation technique. Trends Biomater Artif Organs. 2002;15:31–6.

    Google Scholar 

  26. Mastiholimath VS et al. In vitro and in vivo evaluation of ranitidine hydrochloride ethyl cellulose floating microparticles. J Microencapsul. 2008;25(5):307–14.

    Article  CAS  PubMed  Google Scholar 

  27. Nilkumhang S, Basit AW. The robustness and flexibility of an emulsion solvent evaporation method to prepare pH-responsive microparticles. Int J Pharm. 2009;377:135–41.

    Article  CAS  PubMed  Google Scholar 

  28. Krishnamachari Y, Madan P, Lin S. Development of pH- and time-dependent oral microparticles to optimize budesonide delivery to ileum and colon. Int J Pharm. 2007;338:238–47.

    Article  CAS  PubMed  Google Scholar 

  29. Bodmeier R, McGinity JW. Solvent selection in the preparation of poly(-lactide) microspheres prepared by the solvent evaporation method. Int J Pharm. 1988;43:179–86.

    Article  CAS  Google Scholar 

  30. Yang YY, Chung TS, Ng NP. Morphology, drug distribution, and in vitro release profiles of biodegradable polymeric microspheres containing protein fabricated by double-emulsion solvent extraction/evaporation method. Biomaterials. 2001;22:231–41.

    Article  CAS  PubMed  Google Scholar 

  31. Nixon JR, Jalil R. Biodegradable poly(lactic acid) and poly (lactide-coglycolide) microcapsules: problems associated with preparative techniques and release properties. J Microencapsul. 1990;7:297–325.

    Article  PubMed  Google Scholar 

  32. Guyot M, Fawaz F. Nifedipine loaded-polymeric microspheres: preparation and physical characteristics. Int J Pharm. 1998;175(1):61–74.

    Article  CAS  Google Scholar 

  33. Alhnan M.A. et al. Inhibiting the gastric burst release of drugs from enteric microparticles: the influence of drug molecular mass and solubility. J Pharm Sci. 2010: 99(11).

  34. Kendall RA et al. Fabrication and in vivo evaluation of highly pH-responsive acrylic microparticles for targeted gastrointestinal delivery. Eur J Pharm Sci. 2009;37:284–90.

    Article  CAS  PubMed  Google Scholar 

  35. Kilicarslan M, Baykara T. Effects of the permeability characteristics of different polymethacrylates on the pharmaceutical characteristics of verapamil hyhdrochloride-loaded microspheres. J Microencapsul. 2004;21(2):175–89.

    Article  CAS  PubMed  Google Scholar 

  36. Obeidat WM, Price JC. Preparation and evaluation of Eudragit S 100 microspheres as pH-sensitive release preparations for piroxicam and theophylline using the emulsion-solvent evaporation method. J Microencapsul. 2006;23:195–202.

    Article  CAS  PubMed  Google Scholar 

  37. Song M et al. Effect of viscosity and concentration of wall former, emulsifier and pore-inducer on the properties of amoxicillin microcapsules prepared by emulsion solvent evaporation. Farmaco. 2005;60:261–7.

    Article  CAS  PubMed  Google Scholar 

  38. Lehmann K, Petereit HU, Dreher D. Fast disintegrating controlled-release tablets from coated particles. Pharm Ind. 1993;55:940–7.

    CAS  Google Scholar 

  39. Bodmeier R, Chen H. Preparation and characterization of microspheres containing the anti-inflammatory agents, indomethacin, ibuprofen, and ketoprofen. J Control Release. 1989;10:167–75.

    Article  CAS  Google Scholar 

  40. Langguth P et al. Variable gastric emptying and discontinuities in drug absorption profiles—dependence of rates and extent of cimetidine absorption on motility phase and pH. Biopharm Drug Dispos. 1994;15:719–46.

    Article  CAS  PubMed  Google Scholar 

  41. Metsugi Y et al. Appearance of double peaks in plasma concentration-time profile after oral administration depends on gastric emptying profile and weight function. Pharm Res. 2008;25:886–95.

    Article  CAS  PubMed  Google Scholar 

  42. Li BQ et al. Effect of route of administration on the pharmacokinetics and toxicokinetics of cinnarizine in dogs. Eur J Pharm Sci. 2010;14(3):197–201.

    Article  Google Scholar 

  43. Bechgaard H, Ladefoged K. Distribution of pellets in the gastrointestinal tract. The influence on transit time exerted by the density or diameter of pellets. J Pharm Pharmacol. 1978;30:690–2.

    Article  CAS  PubMed  Google Scholar 

  44. Bechgaard H, Nielson GH. Controlled release multiple units and single unit doses. Drug Dev Ind Pharm. 1978;4:53–67.

    Article  CAS  Google Scholar 

  45. Vervaet C, Baert L, Remon JP. Extrusion-spheronization: a literature review. Int J Pharm. 1995;116:131–46.

    Article  CAS  Google Scholar 

  46. Streubel A, Siepmann J, Bodmeier R. Multiple unit gastroretentive drug delivery systems: a new preparation method for low density microparticles. J Microencapsul. 2003;20(3):329–47.

    Article  CAS  PubMed  Google Scholar 

  47. Porter CJ, Charman WN. Intestinal lymphatic drug transport: an update. Adv Drug Deliv Rev. 2001;50:61–80.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rabab Kamel.

Ethics declarations

The study protocol was reviewed and approved by the Ethics Committee of the National Research Center, Cairo, Egypt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ammar, H.O., Ghorab, M., Kamel, R. et al. A trial for the design and optimization of pH-sensitive microparticles for intestinal delivery of cinnarizine. Drug Deliv. and Transl. Res. 6, 195–209 (2016). https://doi.org/10.1007/s13346-015-0277-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-015-0277-4

Keywords

Navigation