Skip to main content

Advertisement

Log in

Oxaliplatin lipidated prodrug synergistically enhances the anti-colorectal cancer effect of IL12 mRNA

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Colorectal cancer (CRC) is the fourth most common cancer in the world, with the second highest incidence rate after lung cancer. Oxaliplatin (OXA) is a broad-spectrum anti-tumor agent with significant therapeutic efficacy in colorectal cancer, and as a divalent platinum analog, it is not selective in its distribution in the body and has systemic toxicity with continued use. Interleukin-12 (IL12) is an immunostimulatory cytokine with cytokine monotherapy that has made advances in the fight against cancer, limiting the clinical use of cytokines due to severe toxicity. Here, we introduced a long alkyl chain and N-methyl-2,2-diaminodiethylamine to the ligand of OXA to obtain OXA-LIP, which effectively reduces its toxicity and improves the uptake of the drug by tumor cells. We successfully constructed IL12 mRNA and used LNPs to deliver IL12 mRNA, and in vivo pharmacodynamic studies demonstrated that OXA-LIP combined with IL12 mRNA had better tumor inhibition and higher biosafety. In addition, it was investigated by pharmacokinetic experiments that the OXA-LIP drug could accumulate in nude mice at the tumor site, which prolonged the half-life and enhanced the anti-tumor efficiency of OXA. It is hoped that these results will provide an important reference for the subsequent research and development of OXA-LIP with IL12 mRNA, as well as provide new therapeutic approaches for the treatment of colon cancer.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Availability of data and materials

Not applicable.

References

  1. Dekker E, Tanis PJ, Vleugels JLA, et al. Colorectal cancer. Lancet. 2019;394(10207):1467–1480. https://doi.org/10.1016/s0140-6736(19)32319-0.

    Article  PubMed  Google Scholar 

  2. Cao W, Chen HD, Yu YW, et al. Changing profiles of cancer burden worldwide and in China: a secondary analysis of the global cancer statistics 2020. Chin Med J (Engl). 2021;134(7):783–791. https://doi.org/10.1097/cm9.0000000000001474.

    Article  PubMed  Google Scholar 

  3. Xia C, Dong X, Li H, et al. Cancer statistics in China and United States, 2022: profiles, trends, and determinants. Chin Med J (Engl). 2022;135(5):584–590. https://doi.org/10.1097/cm9.0000000000002108.

    Article  PubMed  Google Scholar 

  4. Chen L, Han X. Anti-PD-1/PD-L1 therapy of human cancer: past, present, and future. J Clin Invest. 2015;125(9):3384–91. https://doi.org/10.1172/jci80011.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Taube JM, Klein A, Brahmer JR, et al. Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy. Clin Cancer Res. 2014;20(19):5064–74. https://doi.org/10.1158/1078-0432.Ccr-13-3271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhang YX, Zhao YY, Shen J, et al. Nanoenabled modulation of acidic tumor microenvironment reverses anergy of infiltrating T cells and potentiates anti-PD-1 therapy. Nano Lett. 2019;19(5):2774–2783. https://doi.org/10.1021/acs.nanolett.8b04296.

    Article  CAS  PubMed  ADS  Google Scholar 

  7. Zhou F, Feng B, Yu H, et al. Tumor microenvironment-activatable prodrug vesicles for nanoenabled cancer chemoimmunotherapy combining immunogenic cell death induction and CD47 blockade. Adv Mater. 2019;31(14):e1805888. https://doi.org/10.1002/adma.201805888.

    Article  CAS  PubMed  Google Scholar 

  8. Wang G, Yang B, Fu Z, et al. Efficacy and safety of oxaliplatin-based regimen versus cisplatin-based regimen in the treatment of gastric cancer: a meta-analysis of randomized controlled trials. Int J Clin Oncol. 2019;24(6):614–623. https://doi.org/10.1007/s10147-019-01425-x.

    Article  CAS  PubMed  Google Scholar 

  9. Perego P, Robert J. Oxaliplatin in the era of personalized medicine: from mechanistic studies to clinical efficacy. Cancer Chemother Pharmacol. 2016;77(1):5–18. https://doi.org/10.1007/s00280-015-2901-x.

    Article  CAS  PubMed  Google Scholar 

  10. Fu Y, Kong Y, Li X, et al. Novel Pt(IV) prodrug self-assembled nanoparticles with enhanced blood circulation stability and improved antitumor capacity of oxaliplatin for cancer therapy. Drug Deliv. 2023;30(1):2171158. https://doi.org/10.1080/10717544.2023.2171158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mu M, Zhan J, Dai X, et al. Research progress of azido-containing Pt(IV) antitumor compounds. Eur J Med Chem. 2022;227:113927. https://doi.org/10.1016/j.ejmech.2021.113927.

    Article  CAS  PubMed  Google Scholar 

  12. Venkatesh V, Sadler PJ. Platinum(IV) prodrugs. Met Ions Life Sci. 2018;18:69–108. https://doi.org/10.1515/9783110470734-009.

  13. Liu X, Barth MC, Cseh K, et al. Oxoplatin-based Pt(IV) Lipoate complexes and their biological activity. Chem Biodivers. 2022;19(10):e202200695. https://doi.org/10.1002/cbdv.202200695.

    Article  CAS  PubMed  Google Scholar 

  14. Liu X, Wenisch D, Dahlke P, et al. Multi-action platinum(IV) prodrugs conjugated with COX-inhibiting NSAIDs. Eur J Med Chem. 2023;257:115515. https://doi.org/10.1016/j.ejmech.2023.115515.

    Article  CAS  PubMed  Google Scholar 

  15. Chapman RW, Corboz MR, Malinin VS, et al. An overview of the biology of a long-acting inhaled treprostinil prodrug. Pulm Pharmacol Ther. 2020;65:102002. https://doi.org/10.1016/j.pupt.2021.102002.

    Article  CAS  PubMed  Google Scholar 

  16. Colombo MP, Trinchieri G. Interleukin-12 in anti-tumor immunity and immunotherapy. Cytokine Growth Factor Rev. 2002;13(2):155–68. https://doi.org/10.1016/s1359-6101(01)00032-6.

    Article  CAS  PubMed  Google Scholar 

  17. Del Vecchio M, Bajetta E, Canova S, et al. Interleukin-12: biological properties and clinical application. Clin Cancer Res. 2007;13(16):4677–85. https://doi.org/10.1158/1078-0432.Ccr-07-0776.

    Article  CAS  PubMed  Google Scholar 

  18. Landoni E, Woodcock MG, Barragan G, et al. IL-12 reprograms CAR-expressing natural killer T cells to long-lived Th1-polarized cells with potent antitumor activity. Nat Commun. 2024;15(1):89. https://doi.org/10.1038/s41467-023-44310-y.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  19. Cirella A, Berraondo P, Di Trani CA, et al. Interleukin-12 message in a bottle. Clin Cancer Res. 2020;26(23):6080–6082. https://doi.org/10.1158/1078-0432.Ccr-20-3250.

    Article  CAS  PubMed  Google Scholar 

  20. Wang Q, Cheng F, Ma TT, et al. Interleukin-12 inhibits the hepatocellular carcinoma growth by inducing macrophage polarization to the M1-like phenotype through downregulation of Stat-3. Mol Cell Biochem. 2016;415(1–2):157–68. https://doi.org/10.1007/s11010-016-2687-0.

    Article  CAS  PubMed  Google Scholar 

  21. Hewitt SL, Bailey D, Zielinski J, et al. Intratumoral IL12 mRNA therapy promotes TH1 transformation of the tumor microenvironment. Clin Cancer Res. 2020;26(23):6284–6298. https://doi.org/10.1158/1078-0432.Ccr-20-0472.

    Article  CAS  PubMed  Google Scholar 

  22. Jung HN, Lee SY, Lee S, et al. Lipid nanoparticles for delivery of RNA therapeutics: current status and the role of in vivo imaging. Theranostics. 2022;12(17):7509–7531. https://doi.org/10.7150/thno.77259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu JQ, Zhang C, Zhang X, et al. Intratumoral delivery of IL-12 and IL-27 mRNA using lipid nanoparticles for cancer immunotherapy. J Control Release. 2022;345:306–313. https://doi.org/10.1016/j.jconrel.2022.03.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang C, Zhang Y, Dong Y. Lipid nanoparticle-mRNA formulations for therapeutic applications. Acc Chem Res. 2021;54(23):4283–4293. https://doi.org/10.1021/acs.accounts.1c00550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tugues S, Burkhard SH, Ohs I, et al. New insights into IL-12-mediated tumor suppression. Cell Death Differ. 2015;22(2):237–46. https://doi.org/10.1038/cdd.2014.134.

    Article  CAS  PubMed  Google Scholar 

  26. Feng B, Zhou FY, Xu ZA, et al. Versatile prodrug nanoparticles for acid-triggered precise imaging and organelle-specific combination cancer therapy. Adv Funct Mater. 2016;26(41):7431–7442. https://doi.org/10.1002/adfm.201602963.

    Article  CAS  Google Scholar 

  27. Lang T, Li N, Zhang J, et al. Prodrug-based nano-delivery strategy to improve the antitumor ability of carboplatin in vivo and in vitro. Drug Deliv. 2021;28(1):1272–1280. https://doi.org/10.1080/10717544.2021.1938754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang Y, Li D, Shen Y, et al. Immunization with a novel mRNA vaccine, TGGT1_216200 mRNA-LNP, prolongs survival time in BALB/c mice against acute toxoplasmosis. Front Immunol. 2023;14:1161507. https://doi.org/10.3389/fimmu.2023.1161507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pardi N, Hogan MJ, Porter FW, et al. mRNA vaccines - a new era in vaccinology. Nat Rev Drug Discov. 2018;17(4):261–279. https://doi.org/10.1038/nrd.2017.243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Huysmans H, De Temmerman J, Zhong Z, et al. Improving the repeatability and efficacy of intradermal electroporated self-replicating mRNA. Mol Ther Nucleic Acids. 2019;17:388–395. https://doi.org/10.1016/j.omtn.2019.06.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cu Y, Broderick KE, Banerjee K, et al. Enhanced delivery and potency of self-amplifying mRNA vaccines by electroporation in situ. Vaccines (Basel). 2013;1(3):367–83. https://doi.org/10.3390/vaccines1030367.

    Article  PubMed  Google Scholar 

  32. Li B, Cai M, Lin L, et al. MRI-visible and pH-sensitive micelles loaded with doxorubicin for hepatoma treatment. Biomater Sci. 2019;7(4):1529–1542. https://doi.org/10.1039/c8bm01501e.

    Article  CAS  PubMed  Google Scholar 

  33. Wang XN, Li Y, Meng L, et al. Evaluation of influence of telmisartan on the pharmacokinetics and tissue distribution of canagliflozin in rats and mice. Ann Palliat Med. 2021;10(3):3086–3096. https://doi.org/10.21037/apm-21-65.

    Article  PubMed  Google Scholar 

  34. Li T, Qian Y, Li H, et al. Combination of serum lipids and cancer antigens as a novel marker for colon cancer diagnosis. Lipids Health Dis. 2018;17(1):261. https://doi.org/10.1186/s12944-018-0911-5.

    Article  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang X, Qin H, Tan X, et al. Predictive value of monocyte to high-density lipoprotein cholesterol ratio and tumor markers in colorectal cancer and their relationship with clinicopathological characteristics. World J Surg Oncol. 2023;21(1):200. https://doi.org/10.1186/s12957-023-03079-6.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Riedl JM, Posch F, Prager G, et al. The AST/ALT (De Ritis) ratio predicts clinical outcome in patients with pancreatic cancer treated with first-line nab-paclitaxel and gemcitabine: post hoc analysis of an Austrian multicenter, noninterventional study. Ther Adv Med Oncol. 2020;12:1758835919900872. https://doi.org/10.1177/1758835919900872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bahia MS, Silakari O. Tumor necrosis factor alpha converting enzyme: an encouraging target for various inflammatory disorders. Chem Biol Drug Des. 2010;75(5):415–43. https://doi.org/10.1111/j.1747-0285.2010.00950.x.

    Article  CAS  PubMed  Google Scholar 

  38. van Horssen R, Ten Hagen TL, Eggermont AM. TNF-alpha in cancer treatment: molecular insights, antitumor effects, and clinical utility. Oncologist. 2006;11(4):397–408. https://doi.org/10.1634/theoncologist.11-4-397.

    Article  CAS  PubMed  Google Scholar 

  39. Margraf A, Ludwig N, Zarbock A, et al. Systemic inflammatory response syndrome after surgery: mechanisms and protection. Anesth Analg. 2020;131(6):1693–1707. https://doi.org/10.1213/ane.0000000000005175.

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by National Natural Science Foundation of China (32070927), Natural Science Foundation of Shandong Province (ZR2023MC121), and Science and Technology Innovation Development Planning of Yantai (2023JCYJ060, 2023JCYJ064).

Author information

Authors and Affiliations

Authors

Contributions

Hui Liu: conceptualization, writing — original draft, writing — review and editing. Yating Du: writing — original draft, writing — review and editing. Yuanlei Fu: conceptualization, writing — review and editing, supervision. Haiqiang Cao: conceptualization, writing — review and editing, supervision. Jianpeng Yin: investigation, resources, visualization, writing — review and editing. Desheng Zhan: writing — review and editing. Wenjun Yu: writing — review and editing. Yan Li: writing — review and editing. Aiping Wang: writing — review and editing.

Corresponding authors

Correspondence to Jianpeng Yin, Haiqiang Cao or Yuanlei Fu.

Ethics declarations

Ethics approval

All the animal experiments reported in this paper were approved by the Committee on the Ethics of Animal Experiments of the Yantai Institute of Materia Medica, and were performed in strict accordance with the guidelines of the National Institutes of Health Guide for the Care and Use of Laboratory Animals.

Consent to participate

Not applicable.

Consent for publication

All the authors provided consent for publication.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Hui Liu, Yating Du, and Desheng Zhan contributed equally to this study.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Du, Y., Zhan, D. et al. Oxaliplatin lipidated prodrug synergistically enhances the anti-colorectal cancer effect of IL12 mRNA. Drug Deliv. and Transl. Res. (2024). https://doi.org/10.1007/s13346-024-01540-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13346-024-01540-x

Keywords

Navigation