Skip to main content

Advertisement

Log in

Simple preparation and greatly improved oral bioavailability: The supersaturated drug delivery system of quercetin based on PVP K30

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Quercetin, as a representative flavonoid, is widely present in daily diet and has been developed as a dietary supplement due to its beneficial physiological activities. However, the application of quercetin is limited due to its poor water solubility and extensive metabolism. So far, the nano-drug delivery systems designed to improve its bioavailability generally have the shortcomings of low drug loading content and difficulty in industrial production. In order to tackle these problems, quercetin supersaturated drug delivery system (QSDDS) was successfully prepared using solvent method, for which PVP K30 was employed as a crystallization and precipitation inhibitor to maintain the supersaturated state of quercetin in aqueous system. The obtained QSDDS, with a relative high drug loading content of 13%, could quickly disperse in water and form colloidal system with the mean particle size of about 200 nm, meanwhile induce the generation of supersaturated quercetin solution more than 12 h. In vivo pharmacokinetic study proved that QSDDS achieved a high absolute bioavailability of 36.05%, 10 times as that of physical quercetin suspension, which was dose-dependent with higher bioavailability at higher dose. Considering the simple preparation method, QSDDS provided a feasible strategy and a simple way to improve oral absorption of insoluble flavonoids.

Graphical abstract

Quercetin supersaturated drug delivery system (QSDDS) using PVP K30 as precipitation inhibitor can maintain supersaturation and increase the oral bioavailability of free quercetin in plasma(by Figdraw)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Li Y, Yao J, Han C, Yang J, Chaudhry MT, Wang S, Liu H, Yin Y. Quercetin, inflammation and immunity. Nutrients. 2016;8(3):167.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Deepika, Maurya PK. Health benefits of quercetin in age-related diseases. Molecules. 2022;27(8):2498. https://doi.org/10.3390/molecules27082498. PMID: 35458696; PMCID: PMC9032170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Aghababaei F, Hadidi M. Recent advances in potential health benefits of quercetin. Pharmaceuticals (Basel). 2023;16(7):1020. https://doi.org/10.3390/ph16071020. PMID: 37513932; PMCID: PMC10384403.

    Article  CAS  PubMed  Google Scholar 

  4. Pasdar Y, Oubari F, Zarif MN, Abbasi M, Pourmahmoudi A, Hosseinikia M. Effects of quercetin supplementation on hematological parameters in non-alcoholic fatty liver disease: A randomized double-blind, placebo-controlled pilot study. Clin Nutr Res. 2020;9(1):11–9.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Serban MC, Sahebkar A, Zanchetti A, Mikhailidis DP, Howard G, Antal D, Andrica F, Ahmed A, Aronow WS, Muntner P, Lip GY, Graham I, Wong N, Rysz J, Banach M, Lipid and Blood Pressure Meta‐analysis Collaboration (LBPMC) Group. Effects of quercetin on blood pressure: a systematic review and meta-analysis of randomized controlled trials. J Am Heart Assoc. 2016;12(5):e002713. https://doi.org/10.1161/JAHA.115.002713. PMID: 27405810; PMCID: PMC5015358.

    Article  Google Scholar 

  6. Rauf A, Imran M, Khan IA, Ur-Rehman M, Gilani SA, Mehmood Z, Mubarak MS. Anticancer potential of quercetin: A comprehensive review. Phytother Res. 2018;32(11):2109–30.

    Article  CAS  PubMed  Google Scholar 

  7. Hickson LJ, Langhi Prata LGP, Bobart SA, Evans TK, Giorgadze N, Hashmi SK, Herrmann SM, Jensen MD, Jia Q, Jordan KL, Kellogg TA, Khosla S, Koerber DM, Lagnado AB, Lawson DK, LeBrasseur NK, Lerman LO, McDonald KM, McKenzie TJ, Passos JF, Pignolo RJ, Pirtskhalava T, Saadiq IM, Schaefer KK, Textor SC, Victorelli SG, Volkman TL, Xue A, Wentworth MA, Wissler Gerdes EO, Zhu Y, Tchkonia T, Kirkland JL. Senolytics decrease senescent cells in humans: Preliminary report from a clinical trial of Dasatinib plus Quercetin in individuals with diabetic kidney disease. EBioMedicine. 2019;47:446–56.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Heinz SA, Henson DA, Austin MD, Jin F, Nieman DC. Quercetin supplementation and upper respiratory tract infection: A randomized community clinical trial. Pharmacol Res. 2010;62(3):237–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wu B, Morrow JK, Singh R, Zhang S, Hu M. Three-dimensional quantitative structure-activity relationship studies on UGT1A9-mediated 3-O-glucuronidation of natural flavonols using a pharmacophore-based comparative molecular field analysis model. J Pharmacol Exp Ther. 2011;336(2):403–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Morand C, Crespy V, Manach C, Besson C, Demigné C, Rémésy C. Plasma metabolites of quercetin and their antioxidant properties. Am J Physiol. 1998;275(1):R212–9.

    CAS  PubMed  Google Scholar 

  11. Justino GC, Santos MR, Canário S, Borges C, Florêncio MH, Mira L. Plasma quercetin metabolites: structure-antioxidant activity relationships. Arch Biochem Biophys. 2004;432(1):109–21.

    Article  CAS  PubMed  Google Scholar 

  12. Fujimori M, Kadota K, Shimono K, Shirakawa Y, Sato H, Tozuka Y. Enhanced solubility of quercetin by forming composite particles with transglycosylated materials. J Food Eng. 2015;149:248–54.

    Article  CAS  Google Scholar 

  13. Lv L, Liu C, Li Z, Song F, Li G, Huang X. Pharmacokinetics of Quercetin-Loaded Methoxy Poly(ethylene glycol)-b-poly(L-lactic acid) Micelle after Oral Administration in Rats. Biomed Res Int. 2017;2017:1750895.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Jaisamut P, Wanna S, Limsuwan S, Chusri S, Wiwattanawongsa K, Wiwattanapatapee R. Enhanced oral bioavailability and improved biological activities of a quercetin/resveratrol combination using a liquid self-microemulsifying drug delivery system. Planta Med. 2021;87(4):336–46.

    Article  CAS  PubMed  Google Scholar 

  15. Li H, Li M, Fu J, Ao H, Wang W, Wang X. Enhancement of oral bioavailability of quercetin by metabolic inhibitory nanosuspensions compared to conventional nanosuspensions. Drug Deliv. 2021;28(1):1226–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wu N, Zhang Y, Ren J, Zeng A, Liu J. Preparation of quercetin-nicotinamide cocrystals and their evaluation under in vivo and in vitro conditions. RSC Adv. 2020;10(37):21852–9.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yin J, Hou Y, Song X, Wang P, Li Y. Cholate-modified polymer-lipid hybrid nanoparticles for oral delivery of quercetin to potentiate the antileukemic effect. Int J Nanomedicine. 2019;14:4045–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shi X, Fan N, Zhang G, Sun J, He Z, Li J. Quercetin amorphous solid dispersions prepared by hot melt extrusion with enhanced solubility and intestinal absorption. Pharm Dev Technol. 2020;25(4):472–81.

    Article  CAS  PubMed  Google Scholar 

  19. Penalva R, González-Navarro CJ, Gamazo C, Esparza I, Irache JM. Zein nanoparticles for oral delivery of quercetin: Pharmacokinetic studies and preventive anti-inflammatory effects in a mouse model of endotoxemia. Nanomedicine. 2017;13(1):103–10.

    Article  CAS  PubMed  Google Scholar 

  20. Ren J, Fang Z, Jiang L, Du Q. Quercetin-containing self-assemble proliposome preparation and evaluation. J Liposome Res. 2017;27(4):335–42.

    Article  CAS  PubMed  Google Scholar 

  21. Lu Z, Bu C, Hu W, Zhang H, Liu M, Lu M, Zhai G. Preparation and in vitro and in vivo evaluation of quercetin-loaded mixed micelles for oral delivery. Biosci Biotechnol Biochem. 2018;82(2):238–46.

    Article  CAS  PubMed  Google Scholar 

  22. Pangeni R, Panthi VK, Yoon IS, Park JW. Preparation, characterization, and in vivo evaluation of an oral multiple nanoemulsive system for co-delivery of pemetrexed and quercetin. Pharmaceutics. 2018;10(3):158. https://doi.org/10.3390/pharmaceutics10030158. PMID: 30213140; PMCID: PMC6161295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang Z, Dai B, Tang X, Che Z, Hu F, Shen C, Wu W, Shen B, Yuan H. Fabrication and in vitro/vivo evaluation of drug nanocrystals self-stabilized pickering emulsion for oral delivery of quercetin. Pharmaceutics. 2022;14(5):897. https://doi.org/10.3390/pharmaceutics14050897. PMID: 35631483; PMCID: PMC9145886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Peñalva R, Esparza I, Morales-Gracia J, González-Navarro CJ, Larrañeta E, Irache JM. Casein nanoparticles in combination with 2-hydroxypropyl-β-cyclodextrin improves the oral bioavailability of quercetin. Int J Pharm. 2019;570:118652.

    Article  PubMed  Google Scholar 

  25. Tian R, Wang H, Xiao Y, Hu P, Du R, Shi X, Wang Z, Xie Y. Fabrication of nanosuspensions to improve the oral bioavailability of total flavones from hippophae rhamnoides L. and their comparison with an inclusion complex. AAPS PharmSciTech. 2020;21(7):249.

    Article  CAS  PubMed  Google Scholar 

  26. Han J, Tong M, Li S, Yu X, Hu Z, Zhang Q, Xu R, Wang J. Surfactant-free amorphous solid dispersion with high dissolution for bioavailability enhancement of hydrophobic drugs: a case of quercetin. Drug Dev Ind Pharm. 2021;47(1):153–62.

    Article  CAS  PubMed  Google Scholar 

  27. Shen B, Shen C, Zhu W, Yuan H. The contribution of absorption of integral nanocrystals to enhancement of oral bioavailability of quercetin. Acta Pharm Sin B. 2021;11(4):978–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lodi F, Jiménez R, Menendez C, Needs PW, Duarte J, Perez-Vizcaino F. Glucuronidated metabolites of the flavonoid quercetin do not auto-oxidise, do not generate free radicals and do not decrease nitric oxide bioavailability. Planta Med. 2008;74(7):741–6.

    Article  CAS  PubMed  Google Scholar 

  29. Lodi F, Jimenez R, Moreno L, Kroon PA, Needs PW, Hughes DA, Santos-Buelga C, Gonzalez-Paramas A, Cogolludo A, Lopez-Sepulveda R, Duarte J, Perez-Vizcaino F. Glucuronidated and sulfated metabolites of the flavonoid quercetin prevent endothelial dysfunction but lack direct vasorelaxant effects in rat aorta. Atherosclerosis. 2009;204(1):34–9.

    Article  CAS  PubMed  Google Scholar 

  30. Di Pierro F, Derosa G, Maffioli P, Bertuccioli A, Togni S, Riva A, Allegrini P, Khan A, Khan S, Khan BA, Altaf N, Zahid M, Ujjan ID, Nigar R, Khushk MI, Phulpoto M, Lail A, Devrajani BR, Ahmed S. Possible therapeutic effects of adjuvant quercetin supplementation against early-stage COVID-19 infection: A prospective randomized, controlled, and open-label study. Int J Gen Med. 2021;14:2359–66.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Di Pierro F, Iqtadar S, Khan A, Ullah Mumtaz S, Masud Chaudhry M, Bertuccioli A, Derosa G, Maffioli P, Togni S, Riva A, Allegrini P, Khan S. Potential clinical benefits of quercetin in the early stage of COVID-19: Results of a second, pilot, randomized, controlled and open-label clinical trial. Int J Gen Med. 2021;14:2807–16.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Riva A, Ronchi M, Petrangolini G, Bosisio S, Allegrini P. Improved oral absorption of quercetin from quercetin phytosome®, a new delivery system based on food grade lecithin. Eur J Drug Metab Pharmacokinet. 2019;44(2):169–77.

    Article  CAS  PubMed  Google Scholar 

  33. Yang M, Gong W, Wang Y, Shan L, Li Y, Gao C. Bioavailability improvement strategies for poorly water-soluble drugs based on the supersaturation mechanism: An update. J Pharm Pharm Sci. 2016;19(2):208–25.

    Article  CAS  PubMed  Google Scholar 

  34. Augustijns P, Brewster ME. Supersaturating drug delivery systems: fast is not necessarily good enough. J Pharm Sci. 2012;101(1):7–9.

    Article  CAS  PubMed  Google Scholar 

  35. Sharma A, Arora K, Mohapatra H, Sindhu RK, Bulzan M, Cavalu S, Paneshar G, Elansary HO, El-Sabrout AM, Mahmoud EA, Alaklabi A. Supersaturation-based drug delivery systems: strategy for bioavailability enhancement of poorly water-soluble drugs. Molecules. 2022;27(9):2969. https://doi.org/10.3390/molecules27092969. PMID: 35566319; PMCID: PMC9101434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liu C, Chen Z, Chen Y, Lu J, Li Y, Wang S, Wu G, Qian F. Improving oral bioavailability of sorafenib by optimizing the “spring” and “parachute” based on molecular interaction mechanisms. Mol Pharm. 2016;13(2):599–608.

    Article  CAS  PubMed  Google Scholar 

  37. Marques M. Dissolution media simulating fasted and fed states. Dissolut Technol. 2004;11(2):16–16.

    Article  Google Scholar 

  38. Chen X, Partheniadis I, Nikolakakis I, Al-Obaidi H. Solubility improvement of progesterone from solid dispersions prepared by solvent evaporation and co-milling. Polymers (Basel). 2020;12(4):854. https://doi.org/10.3390/polym12040854. PMID: 32272718; PMCID: PMC7240508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Abdelkawy KS, Balyshev ME, Elbarbry F. A new validated HPLC method for the determination of quercetin: Application to study pharmacokinetics in rats. Biomed Chromatogr. 2017;31(3). https:/doi.org/10.1002/bmc.3819. Epub 2016 Sep 21. PMID: 27555122.

  40. Carvalho D, Pinho C, Oliveira R, Moreira F, Oliveira AI. Chromatographic methods developed for the quantification of quercetin extracted from natural sources: systematic review of published studies from 2018 to 2022. Molecules. 2023;28(23):7714. https://doi.org/10.3390/molecules28237714. PMID: 38067447; PMCID: PMC10708206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Vlerick L, Devreese M, Peremans K, Dockx R, Croubels S, Duchateau L, Polis I. Pharmacokinetics, absolute bioavailability and tolerability of ketamine after intranasal administration to dexmedetomidine sedated dogs. PLoS One. 2020;15:e0227762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sukhotnik I, Moati D, Shaoul R, Loberman B, Pollak Y, Schwartz B. Quercetin prevents small intestinal damage and enhances intestinal recovery during methotrexate-induced intestinal mucositis of rats. Food Nutr Res. 2018;28:62. https://doi.org/10.29219/fnr.v62.1327. PMID: 30026677; PMCID: PMC5883860.

    Article  CAS  Google Scholar 

  43. Qusa MH, Siddique AB, Nazzal S, El Sayed KA. Novel olive oil phenolic (-)-oleocanthal (+)-xylitol-based solid dispersion formulations with potent oral anti-breast cancer activities. Int J Pharm. 2019;569:118596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lin SP, Hou YC, Liao TY, Tsai SY. Enhancing the bioavailability of magnolol in rabbits using melting solid dispersion with polyvinylpyrrolidone. Drug Dev Ind Pharm. 2014;40:330–7.

    Article  CAS  PubMed  Google Scholar 

  45. Chaturvedi K, Shah HS, Nahar K, Dave R, Morris KR. Contribution of crystal lattice energy on the dissolution behavior of eutectic solid dispersions. ACS Omega. 2020;5:9690–701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Dong W, Su X, Xu M, Hu M, Sun Y, Zhang P. Preparation, characterization, and in vitro/vivo evaluation of polymer-assisting formulation of atorvastatin calcium based on solid dispersion technique, Asian. J Pharm Sci. 2018;13:546–54.

    Google Scholar 

  47. Sethia S, Squillante E. Solid dispersion of carbamazepine in PVP K30 by conventional solvent evaporation and supercritical methods. Int J Pharm. 2004;272:1–10.

    Article  CAS  PubMed  Google Scholar 

  48. Schram CJ, Taylor LS, Beaudoin SP. Influence of polymers on the crystal growth rate of felodipine: Correlating adsorbed polymer surface coverage to solution crystal growth inhibition. Langmuir. 2015;31(41):11279–87.

    Article  CAS  PubMed  Google Scholar 

  49. Shi NQ, Zhang Y, Li Y, Lai HW, Xiao X, Feng B, Qi XR. Self-micellizing solid dispersions enhance the properties and therapeutic potential of fenofibrate: Advantages, profiles and mechanisms. Int J Pharm. 2017;528(1–2):563–77.

    Article  CAS  PubMed  Google Scholar 

  50. Baghel S, Cathcart H, O’Reilly NJ. Theoretical and experimental investigation of drug-polymer interaction and miscibility and its impact on drug supersaturation in aqueous medium. Eur J Pharm Biopharm. 2016;107:16–31.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the CAMS Innovation Fund for Medical Sciences (CIFMS) (No. 2021-I2M-1-071) and the Open Fund for State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process (No SKL2020M0203).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Data collection: Manzhen Li and Haowen Li; formal analysis: Manzhen Li and Likang Lu; methodology: Jingxin Fu, Hui Ao, Hongda Zhang and Haowen Li; resources and supervision: Meihua Han, Yifei Guo, Zhenzhong Wang and Xiangtao Wang; writing original draft: Manzhen Li; writing -review and editing: Xiangtao Wang and Zhenzhong Wang. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Zhenzhong Wang or Xiangtao Wang.

Ethics declarations

Ethics approval

This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by the Ethics Committee of The Institute of Medicinal Plant Development (SLXD-20230202013).

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1183 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Li, H., Lu, L. et al. Simple preparation and greatly improved oral bioavailability: The supersaturated drug delivery system of quercetin based on PVP K30. Drug Deliv. and Transl. Res. (2024). https://doi.org/10.1007/s13346-024-01544-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13346-024-01544-7

Keywords

Navigation