MicroRNA Cargo in Wharton’s Jelly MSC Small Extracellular Vesicles: Key Functionality to In Vitro Prevention and Treatment of Premature White Matter Injury

Author:

Tscherrig VeraORCID,Cottagnoud Sophie,Haesler Valérie,Renz Patricia,Surbek DanielORCID,Schoeberlein AndreinaORCID,Joerger-Messerli Marianne SimoneORCID

Abstract

SummaryPreterm birth is the leading cause of childhood morbidity and mortality and can result in white matter injury (WMI), leading to long-term neurological disabilities with global health burden. Mesenchymal stromal cell-derived small extracellular vesicles (MSC-sEV) are a promising therapeutic agent for treating perinatal neurological injury. They carry microRNAs (miRNAs) predicted to be involved in the onset of premature WMI. We hypothesize that miRNAs have a key function in the beneficial effects of MSC-sEV. We isolated MSC from umbilical cord tissue, the Wharton’s jelly (WJ), and purified small extracellular vesicles (sEV) from WJ-MSC culture supernatant by ultracentrifugation and size exclusion chromatography. The miRNA content was quantified by real-time polymerase chain reaction. A luciferase gene assay validated silencing of TP53 and TAOK1, which we previously identified as predicted target genes of MSC-sEV miRNAs by Next Generation Sequencing and pathway enrichment analysis. The impact of sEV miRNAs on oligodendroglial maturation and neuronal apoptosis was evaluated using an in vitro oxygen-glucose deprivation model (OGD/R) by knocking-down DROSHA in WJ-MSC, which initiates miRNA processing. WJ-MSC-sEV contained miRNAs involved in WMI, namely hsa-miR-22-3p, hsa-miR-21-5p, hsa-miR-27b-3p, and the hsa-let-7 family. The luciferase assay strongly indicated an inhibitory effect of sEV miRNAs on the gene expression of TP53 and TAOK1. Small EV initiated oligodendrocyte maturation and reduced OGD/R-mediated neuronal apoptosis. Knocking-down DROSHA in WJ-MSC reduced the expression of sEV miRNAs and led to the loss of their beneficial effects. Our in vitro study strongly indicates the key function of miRNAs in the therapeutic potential of WJ-MSC-sEV in premature WMI.

Funder

University of Bern

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Reference71 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3