Effect of Octamer-Binding Transcription Factor 4 Overexpression on the Neural Induction of Human Dental Pulp Stem Cells

Author:

Gancheva Maria R.ORCID,Kremer Karlea,Breen James,Arthur Agnes,Hamilton-Bruce Anne,Thomas Paul,Gronthos Stan,Koblar Simon

Abstract

AbstractStem cell-based therapy is a potential alternative strategy for brain repair, with neural stem cells (NSC) presenting as the most promising candidates. Obtaining sufficient quantities of NSC for clinical applications is challenging, therefore alternative cell types, such as neural crest-derived dental pulp stem cells (DPSC), may be considered. Human DPSC possess neurogenic potential, exerting positive effects in the damaged brain through paracrine effects. However, a method for conversion of DPSC into NSC has yet to be developed. Here, overexpression of octamer-binding transcription factor 4 (OCT4) in combination with neural inductive conditions was used to reprogram human DPSC along the neural lineage. The reprogrammed DPSC demonstrated a neuronal-like phenotype, with increased expression levels of neural markers, limited capacity for sphere formation, and enhanced neuronal but not glial differentiation. Transcriptomic analysis further highlighted the expression of genes associated with neural and neuronal functions. In vivo analysis using a developmental avian model showed that implanted DPSC survived in the developing central nervous system and respond to endogenous signals, displaying neuronal phenotypes. Therefore, OCT4 enhances the neural potential of DPSC, which exhibited characteristics aligning with neuronal progenitors. This method can be used to standardise DPSC neural induction and provide an alternative source of neural cell types. Graphical Abstract

Funder

The Hospital Research Foundation

Stroke SA Inc.

Rebecca L. Cooper Medical Research Foundation

The University of Adelaide

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3