Skip to main content

Advertisement

Log in

Interleukin-19 in Bone Marrow Contributes to Bone Loss Via Suppressing Osteogenic Differentiation Potential of BMSCs in Old Mice

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Background

Cellular senescence is an important process related to the pathogenic mechanism of different disorders, especially bone loss. During senescence, bone marrow stromal cells (BMSCs) lose their self-renewal and functional differentiation abilities. Therefore, finding signals opposing the osteogenic differentiation of BMSCs within bone marrow microenvironment is the important for elucidating these above-mentioned mechanisms. Inflammatory cytokines affect bone physiology and remodeling. However, the function of interleukin-19 (IL-19) in skeletal system remains unclear.

Methods

The mouse model of IL-19 knockout was established through embryonic stem cell injection for analyzing how IL-19 affected bone formation. Micro-CT examinations were performed to evaluate bone microstructures. We performed a three-point bending test to measure bone stiffness and the ultimate force. Antibody arrays were performed to detect interleukin family members in bone marrow aspirates. BMSCs were cultured and induced for osteogenic differentiation.

Results

According to our findings, there was increased IL-19 accumulation within bone marrow in old mice relative to that in their young counterparts, resulting in bone loss via the inhibition of BMSCs osteogenic differentiation. Among Wnt/β-catenin pathway members, IL-19 strongly upregulated sFRP1 via STAT3 phosphorylation. The inhibition of STAT3 and sFRP1 abolished IL-19’s inhibition against the BMSCs osteogenic differentiation.

Conclusion

To sum up, IL-19 inhibited BMSCs osteogenic differentiation in old mice. Our findings shed novel lights on pathogenic mechanism underlying age-related bone loss and laid a foundation for further research on identifying novel targets to treat senile osteoporosis.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

Code Availability

Not applicable.

References

  1. Lin, L., Guo, Z., He, E., et al. (2023). SIRT2 regulates extracellular vesicle-mediated liver-bone communication. Nat Metab, 5, 821–841.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tu, K. N., Lie, J. D., Wan, C. K. V., Cameron, M., Austel, A. G., Nguyen, J. K., Van, K., & Hyun, D. J. P. (2018). Therapeutics: Osteoporosis: a review of treatment options 43 (2) 92.

  3. Briot, K., Roux, C., Thomas, T., Blain, H., Buchon, D., Chapurlat, R., Debiais, F., Feron, J. M., Gauvain, J. B., Guggenbuhl, P., et al. (2018). 2018 update of French recommendations on the management of postmenopausal osteoporosis. Jt Bone Spine, 85, 519–530.

    Article  Google Scholar 

  4. Armas, L. A., & Recker, R. R. (2012). Pathophysiology of osteoporosis: New mechanistic insights. Endocrinology and Metabolism Clinics of North America, 41(3), 475–486. https://doi.org/10.1016/j.ecl.2012.04.006.

    Article  CAS  PubMed  Google Scholar 

  5. Wan, M., Gray-Gaillard, E. F., & Elisseeff, J. H. (2021). Cellular Senescence in Musculoskeletal Homeostasis, diseases, and regeneration. Bone Res, 9, https://doi.org/10.1038/s41413-021-00164-y.

  6. Pardanani, A. (2021). Systemic mastocytosis in adults: 2021 update on diagnosis, risk stratification and management. American Journal of Hematology, 96, 508–525. https://doi.org/10.1002/ajh.26118.

    Article  PubMed  Google Scholar 

  7. Manolagas, S. C. (2010). From estrogen-centric to aging and oxidative stress: A revised perspective of the pathogenesis of osteoporosis. Endocrine Reviews, 31(3), 266–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sipos, W., Pietschmann, P., & Rauner, M. (2008). Strategies for novel therapeutic approaches targeting cytokines and signaling pathways of osteoclasto- and osteoblastogenesis in the fight against immune-mediated bone and joint diseases. Current Medicinal Chemistry, 15(2), 127–136.

    Article  CAS  PubMed  Google Scholar 

  9. Zhang, Y. X., Sun, H. L., Liang, H., Li, K., Fan, Q. M., & Zhao, Q. H. (2015). Dynamic and distinct histone modifications of osteogenic genes during osteogenic differentiation. Journal of Biochemistry, 158(6), 445–457.

    CAS  PubMed  Google Scholar 

  10. Infante, A., & Rodriguez, C. I. (2018). Osteogenesis and aging: Lessons from mesenchymal stem cells. Stem Cell Research & Therapy, 9, 244.

    Article  CAS  Google Scholar 

  11. Hu, L., Yin, C., Zhao, F., Ali, A., Ma, J., & Qian, A. (2018). Mesenchymal stem cells: Cell fate decision to osteoblast or adipocyte and application in osteoporosis treatment. International Journal of Molecular Sciences, 19, 360.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Tsukasaki, M., & Takayanagi, H. (2019). Osteoimmunology: Evolving concepts in bone-immune interactions in health and disease. Nature Reviews Immunology, 19, 626.

    Article  CAS  PubMed  Google Scholar 

  13. Yokota, K., Sato, K., Miyazaki, T., et al. (2014). Combination of tumor necrosis factor alpha and interleukin-6 induces mouse osteoclast-like cells with bone resorption activity both in vitro and in vivo. Arth Rheumatol, 66, 121–129.

    Article  CAS  Google Scholar 

  14. Kim, K. W., Kim, H. R., Park, J. Y., et al. (2012). Interleukin-22 promotes osteoclastogenesis in rheumatoid arthritis through induction of RANKL in human synovial fibroblasts. Arthritis and Rheumatism, 64, 1015–1023.

    Article  CAS  PubMed  Google Scholar 

  15. Xue, Y., Liang, Z., Fu, X., Wang, T., Xie, Q., & Ke, D. (2019). IL-17A modulates osteoclast precursors’ apoptosis through autophagy-TRAF3 signaling during osteoclastogenesis. Biochemical and Biophysical Research Communications, 508, 1088–1092.

    Article  CAS  PubMed  Google Scholar 

  16. Maruotti Nicola, Addolorata, C., Cinzia, R., & Cantatore Francesco Paolo. (2020). Janus kinase inhibitors role in bone remodeling. Journal of Cellular Physiology, 235(3), 1915–1920. https://doi.org/10.1002/jcp.29149.

    Article  CAS  PubMed  Google Scholar 

  17. Wang, J., Jianming, C., & Xiaoshi, Z. B. J. (2021). IL-6 regulates the bone metabolism and inflammatory microenvironment in aging mice by inhibiting Setd7. Acta Histochemica, 123(5), 151718. https://doi.org/10.1016/j.acthis.2021.151718.

    Article  CAS  PubMed  Google Scholar 

  18. Gallagher, G., Dickensheets, H., Eskdale, J., Izotova, L. S., Mirochnitchenko, O. V., Peat, J. D., Vazquez, N., Pestka, S., Donnelly, R. P., & Kotenko, S. V. (2000). Cloning, expression and initial characterization of interleukin-19 (IL-19), a novel homologue of human interleukin-10 (IL-10). Genes and Immunity, 1, 442–450.

    Article  CAS  PubMed  Google Scholar 

  19. Sabat, R., Wallace, E., Endesfelder, S., & Wolk, K. (2007). IL-19 and IL-20: Two novel cytokines with importance in infammatory diseases. Expert Opinion on Therapeutic Targets, 11(5), 601–612.

    Article  CAS  PubMed  Google Scholar 

  20. Parrish-Novak, J., Xu, W., Brender, T., Yao, L., Jones, C., West, J., Brandt, C., Jelinek, L., Madden, K., McKernan, P. A., et al. (2002). Interleukins 19, 20, and 24 signal through two distinct receptor complexes. Diferences in receptorligand interactions mediate unique biological functions. Journal of Biological Chemistry, 277(49), 47517–47523.

    Article  CAS  PubMed  Google Scholar 

  21. Liao, Y. C., Liang, W. G., Chen, F. W., Hsu, J. H., Yang, J. J., & Chang, M. S. (2002). IL-19 induces production of IL-6 and TNF-alpha and results in cell apoptosis through TNFalpha. The Journal of Immunology, 1950(169), 4288–4297.

    Article  Google Scholar 

  22. Ray Mitali, Khatuna, G., Vrakas Christine, N., Herman Allison, B., Farah., K., Kelemen Sheri, E., Grisanti Laurel, A., & Autieri Michael, V. (2018). Il19Genetic deletion of IL-19 (Interleukin-19) exacerbates atherogenesis in × double knockout mice by Dysregulation of mRNA Stability Protein HuR (Human Antigen R). Arteriosclerosis, Thrombosis, and Vascular Biology, 38(6), 1297–1308. https://doi.org/10.1161/ATVBAHA.118.310929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Autieri, M. V. (2018). IL-19 and other IL-20 family member cytokines in vascular inflammatory diseases, Frontiers in Immunology, 9, p. 700.

  24. Fujimoto, Y., Aono, K., & Azuma, Y. T. (2019). The clarified role of interleukin-19 in the inflammatory bowel disease and hypersensitivity: Insights from animal models and humans. The Journal of Veterinary Medical Science, 81(8), 1067–1073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hsing, C. H., Li, H. H., Hsu, Y. H., et al. (2008). The distribution of interleukin-19 in healthy and neoplastic tissue. Cytokine, 44(2), 221–228.

    Article  CAS  PubMed  Google Scholar 

  26. Hsu, Y. H., Li, H. H., Sung, J. M., Chen, W. T., Hou, Y. C., & Chang, M. S. (2013). Interleukin-19 mediates tissue damage in murine ischemic acute kidney injury, PLoS One, vol. 8,no. 2, article e56028.

  27. Kingo, K., Mössner, R., Traks, T., et al. (2010). Further association analysis of chr6q22-24 suggests a role of IL-20RA polymorphisms in psoriasis. Journal of Dermatological Science, 57(1), 71–73.

    Article  CAS  PubMed  Google Scholar 

  28. ., Tsubaki Masanobu, Tomoya, T., Takuya, M., Yuuta, Y., Aki, H., & Nishida Shozo. (2021). Yamamoto Kasane., Tsurushima Katsumasa., Ishizaka Toshihiko.,. Interleukin 19 suppresses RANKL-induced osteoclastogenesis via the inhibition of NF-κB and p38MAPK activation and c-Fos expression in RAW264.7 cells. Cytokine, 144(undefined), 155591. https://doi.org/10.1016/j.cyto.2021.155591.

  29. Valenzuela, D., Murphy, A., Frendewey, D., et al. (2003). High-throughput engineering of the mouse genome coupled with high-resolution expression analysis. Nature Biotechnology, 21, 652–659. https://doi.org/10.1038/nbt822.

    Article  CAS  PubMed  Google Scholar 

  30. Azuma, Y. T., Matsuo, Y., Kuwamura, M., et al. (2010). Interleukin-19 protects mice from innate-mediated colonic inflammation. Inflammatory Bowel Diseases, 16(6), 1017–1028. https://doi.org/10.1002/ibd.21151.

    Article  PubMed  Google Scholar 

  31. Xu, M., Tchkonia, T., Ding, H., Ogrodnik, M., Lubbers, E. R., Pirtskhalava, T., White, T. A., Johnson, K. O., Stout, M. B., Mezera, V. 2015b JAK inhibition alleviates the cellular senescence-associated secretory phenotype and frailty in old age. Pnas 112 E6301–E6310.

  32. Hayashi, M., et al. (2019). Autoregulation of osteocyte Sema3A orchestrates estrogen action and counteracts bone aging. Cell Metabolism, 29(3), 627–637. e5.

    Article  CAS  PubMed  Google Scholar 

  33. Gao Qianmin,Wang Lipeng,Wang Sicheng. (2021). Bone marrow mesenchymal stromal cells: Identification, classification, and Differentiation[. J] Front Cell Dev Biol, 9, 787118.

    Google Scholar 

  34. Zhang, J. (2015). Fu Qin,Ren Zhaozhou. Changes of serum cytokines-related Th1/Th2/Th17 concentration in patients with postmenopausal osteoporosis.[J].Gynecol Endocrinol, 31: 183 – 90.

  35. Amarasekara, D. S., Kim, S., & Rho, J. (2021). Regulation of osteoblast differentiation by Cytokine Networks. International Journal of Molecular Sciences, 22(6), 2851. https://doi.org/10.3390/ijms22062851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chakraborty Sushmita,Schneider Jakob,Mitra Dipendra Kumar et al. Mechanistic insight of interleukin-9 induced osteoclastogenesis.[J].Immunology (2023). 169: 309–322.

  37. van Bodegraven (2020). A A,Bravenboer N,Perspective on skeletal health in inflammatory bowel disease[. J] Osteoporos Int, 31, 637–646.

    Article  Google Scholar 

  38. Han, Y., Gao, H., Gan, X., Liu, J., Bao, C., & He, C. (2024). Roles of IL-11 in the regulation of bone metabolism. Front Endocrinol (Lausanne), 14, 1290130. https://doi.org/10.3389/fendo.2023.1290130. Published 2024 Jan 30.

    Article  PubMed  Google Scholar 

  39. Wegenka, U. M. (2010). IL-20: Biological functions mediated through two types of receptor complexes. Cytokine & Growth Factor Reviews, 21, 353–363. https://doi.org/10.1016/j.cytogfr.2010.08.001.

    Article  CAS  Google Scholar 

  40. Gallagher, G., Eskdale, J., Jordan, W., Peat, J., Campbell, J., Boniotto, M., Lennon, G. P., Dickensheets, H., & Donnelly, R. P. (2004). Human interleukin-19 and its receptor: A potential role in the induction of Th2 responses. International Immunopharmacology, 4, 615–626. https://doi.org/10.1016/j.intimp.2004.01.005.

    Article  CAS  PubMed  Google Scholar 

  41. Li, C. H., Zhao, J. X., Sun, L., Yao, Z. Q., Deng, X. L., Liu, R., et al. (2013). AG490 inhibits NFATc1 expression and STAT3 activation during RANKL induced osteoclastogenesis. Biochemical and Biophysical Research Communications, 435(4), 533–539.

    Article  CAS  PubMed  Google Scholar 

  42. Amjadi-Moheb, F., Hosseini, S. R., Kosari-Monfared, M., Ghadami, E., Nooreddini, H., & Akhavan-Niaki, H. (2018). A specific haplotype in potential miRNAs binding sites of secreted frizzled-related protein 1 (SFRP1) is associated with BMD variation in osteoporosis. Gene, 677, 132–141. https://doi.org/10.1016/j.gene.2018.07.061.

    Article  CAS  PubMed  Google Scholar 

  43. Bodine, P. V., Stauffer, B., Ponce-de-Leon, H., Bhat, R. A., Mangine, A., Seestaller-Wehr, L. M., et al. (2009). A small molecule inhibitor of the wnt antagonist secreted frizzled-related protein-1 stimulates bone formation. Bone, 44(6), 1063–1068. https://doi.org/10.1016/j.bone.2009.02.013.

    Article  CAS  PubMed  Google Scholar 

  44. Roforth, M. M., Fujita, K., McGregor, U. I., Kirmani, S., McCready, L. K., Peterson, J. M., et al. (2014). Effects of age on bone mRNA levels of sclerostin and other genes relevant to bone metabolism in humans. Bone, 59, 1–6.

    Article  CAS  PubMed  Google Scholar 

  45. Liu, Y., Wang, X., Chang, H., Gao, X., Dong, C., Li, Z., et al. (2018). Mongolian medicine echinops prevented postmenopausal osteoporosis and induced ER/AKT/ERK pathway in BMSCs. Bioscience Trends, 12(3), 275–281. https://doi.org/10.5582/bst.2018.01046.

    Article  CAS  PubMed  Google Scholar 

  46. Willert, K., Brown, J. D., Danenberg, E., et al. (2003). Wnt proteins are lipid- modified and can act as stem cell growth factors. Nature, 423, 448–452.

    Article  ADS  CAS  PubMed  Google Scholar 

  47. Prakash, N., & Wurst, W. (2007). A wnt signal regulates stem cell fate and differentiation in vivo. Neurodegener Dis, 4, 333–338.

    Article  CAS  PubMed  Google Scholar 

  48. Dejaeger, M., Böhm, A. M., Dirckx, N., Devriese, J., Nefyodova, E., Cardoen, R., St–Arnaud, R., Tournoy, J., Luyten, F. P., & Maes, C. (2017). Integrin-linked kinase regulates bone formation by controlling cytoskeletal organization and modulating BMP and wnt signaling in osteoprogenitors. Journal of Bone and Mineral Research, 32, 2087–2102.

    Article  CAS  PubMed  Google Scholar 

  49. Zaiss, M. M., Axmann, R., Zwerina, J., Polzer, K., Gückel, E., Skapenko, A., SchulzeKoops, H., Horwood, N., Cope, A., & Schett, G. (2007). Treg cells suppress osteoclast formation: A new link between the immune system and bone. Arthritis and Rheumatism, 56, 4104–4112.

    Article  CAS  PubMed  Google Scholar 

  50. Ross, F. P. (2003). Interleukin 7 and estrogen-induced bone loss. Trends Endocrinol Metab14 147–149.

  51. Weitzmann, M. N., Cenci, S., Rifas, L., Brown, C., & Pacifici, R. (2000). Interleukin-7 stimulates osteoclast formation by up-regulating the T-cell production of soluble osteoclastogenic cytokines. Blood, 96, 1873–1878.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was principally supported by the Shanghai Natural Science Foundation (Grant No. 19ZR1440700). Additional funding was provided by the Shanghai Pujiang Program, under the auspices of the Science and Technology Commission of Shanghai Municipality (Grant No. 16PJ0004679), and the Medical-Industrial Interdisciplinary Research Fund of Shanghai Jiaotong University (Grant No. YG2017MS02). The project also received support from the Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine (Grant No. JYKCGZS8) and the Practice Training Base for Interdisciplinary Innovative Talents of Shanghai Jiao Tong University (Grant No. SJTUJXCX-3).

Author information

Authors and Affiliations

Authors

Contributions

QZ supervised the study. Research design was a collaborative effort by QZ, KH, and ZW. EH and HS conducted most experiments, while EH and HW analyzed the data. The manuscript was written by EH, HS, and HW. XZ, WG, and ZD contributed to the discussion section with insightful suggestions.QZ provided overall guidance. All authors discussed the results and commented on the paper.

Corresponding authors

Correspondence to Kai Huang or Qinghua Zhao.

Ethics declarations

Ethics Approval and Consent to Participate

All mice were maintained under SPF conditions in the animal facility of in the Animal Laboratory Unit of Shanghai General Hospital, Shanghai Jiaotong University School of Medicine (Shanghai, China). All experiments were performed with the protocol approved by the Animal Care and Use Committee of Shanghai General Hospital, Shanghai Jiaotong University School of Medicine(Title of the approved project: Interleukin-19 in bone marrow contributes to bone loss via suppressing osteogenic differentiation potential of BMSCs in old mice; Approval number: 2020AWS0023; Date of approval: March 26, 2020).

Consent for Publication

Not applicable.

Competing Interests

Our authors claimed no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, E., Sui, H., Wang, H. et al. Interleukin-19 in Bone Marrow Contributes to Bone Loss Via Suppressing Osteogenic Differentiation Potential of BMSCs in Old Mice. Stem Cell Rev and Rep (2024). https://doi.org/10.1007/s12015-024-10709-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12015-024-10709-3

Keywords

Navigation