HucMSC-EVs Facilitate In Vitro Development of Maternally Aged Preantral Follicles and Oocytes

Author:

Zhang Ying-Yi,Yang Weijie,Zhang Yi,Hu Zhanhong,Chen Yingyan,Ma Yerong,Yang Anran,Shi Zhan,Zhou Hanjing,Ren Peipei,Shi Libing,Jin Jiamin,Rong Yan,Tong Xiaomei,Zhang Yin-Li,Zhang SongyingORCID

Abstract

AbstractFollicle developmental capacity and oocyte quality decline with advanced maternal age. Extracellular vesicles from human umbilical cord mesenchymal stem cells (HucMSC-EVs) act as a potential therapeutic product in the treatment of age-related ovarian dysfunction. In vitro culture (IVC) of preantral follicles is a useful method for understanding the mechanism of follicle development and is a promising means for improving female fertility. However, whether HucMSC-EVs have beneficial effects on aged follicle development during IVC has not yet been reported. Our research demonstrated that follicular development with single-addition withdrawal of HucMSC-EVs was better than that with continuous treatment with HucMSC-EVs. HucMSC-EVs facilitated the survival and growth of follicles, promoted the proliferation of granulosa cells (GCs), and improved the steroid hormone secretion of GCs during IVC of aged follicles. Both GCs and oocytes could uptake HucMSC-EVs. Moreover, we observed elevated cellular transcription in GCs and oocytes after treatment with HucMSC-EVs. The RNA sequencing (RNA-seq) results further validated that the differentially expressed genes are related to the promotion of GC proliferation, cell communication, and oocyte spindle organization. Additionally, the aged oocytes displayed a higher maturation rate, presented less aberrant spindle morphology, and expressed a higher level of the antioxidant protein Sirtuin 1 (SIRT1) after treatment with HucMSC-EVs. Our findings suggested that HucMSC-EVs can improve the growth and quality of aged follicles and oocytes in vitro through the regulation of gene transcription, which provides evidence for HucMSC-EVs as potential therapeutic reagents to restore female fertility with advanced age. Graphical Abstract

Funder

National Key Research and Development Program of China

Key Projects Jointly Constructed by the Ministry and the Province of Zhejiang Medical and Health Science and Technology Project

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3