Mesoporous silica aerogels for sunflower oil refining and investigation of their adsorption performance

Author:

Soylu Tülay MerveORCID,Özel CemORCID,Karakuzu Ikizler BurcuORCID,Özarslan Ali CanORCID,Terzioğlu PınarORCID,Elalmis Yeliz BasaranORCID,Yücel SevilORCID

Abstract

AbstractInvolving a succession of oil refining stages for edible oil production, a notable constraint lies in the necessity to employ diverse adsorbents at various steps within these processes. This study investigates the synthesis of mesoporous silica aerogels from rice husk ash, comparing their efficacy in physical sunflower oil refining with earth clay (Bentonite) and commercial silica (Trisyl). Tetraethyl orthosilicate (TEOS) impact during aging was analyzed using scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), and N2 adsorption-desorption analyzer to examine alterations in the structure of silica aerogels. The surface areas of TEOS-doped silica aerogel (TSA) and non-TEOS-doped silica aerogel (NTSA) were 296.18 and 267.06 m²/g. Mesoporous silica aerogels were evaluated for their ability to reduce free fatty acids (FFA), peroxide value (PV), phosphorus, and color pigments in sunflower oil. TSA and NTSA demonstrated significant FFA removal, with TSA at 3 wt.% achieving the highest performance of 32.2%. TSA also effectively reduced PV and phosphorus compared to NTSA, Bentonite and Trisyl, exhibiting performance similar to Bentonite in the bleaching process. TEOS-doped silica aerogels have shown promise as adsorbents for impurity removal in sunflower oil and has emerged as the potential adsorbent that can comprehensively and effectively meet the requirements of many edible oil physical refining applications in a singular step. Graphical Abstract

Funder

Council of Higher Education

Türkiye Bilimsel ve Teknolojik Araştırma Kurumu

Yildiz Technical University Scientific Research Projects Coordination Unit

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3