Multiparticle amplitudes in a scalar EFT

Author:

Khoze Valentin V.,Schenk SebastianORCID

Abstract

Abstract At sufficiently high energies the production of a very large number of particles is kinematically allowed. However, it is well-known that already in the simplest case of a weakly-coupled massive λφ4 theory, n-particle amplitudes become non-perturbative in the limit where n scales with energy. In this case, the effective expansion parameter, λn, is no longer small and the perturbative approach breaks down. In general, the associated n-particle production rates were argued to be described by an exponential that, depending on the specifics of the underlying Quantum Field Theory model, could be either growing or decaying in the large-n regime. We investigate such processes in general settings of Effective Field Theory (EFT), involving arbitrary higher-dimensional operators of φ. We perform the resummation of all leading loop corrections arising from EFT vertices for amplitudes at the multiparticle threshold. We find that the net effect of higher-dimensional operators amounts to an exponentially growing factor. We show that if an exponential growth was already generated by the renormalizable interactions, it would then be further enhanced by the EFT contributions. On the other hand, if the multiparticle rates computed in the renormalizable part of the theory were suppressed, this suppression would not be lifted in the EFT.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Suppression exponent for multiparticle production in λϕ4 theory;Journal of High Energy Physics;2023-02-21

2. Unitarity in multi-Higgs production using the Schwinger–Dyson equation;Journal of Physics G: Nuclear and Particle Physics;2022-10-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3