Probing the interference between non-linear, axionic and space-time-anisotropy effects in the QED vacuum

Author:

Paixão J. M. A.,Ospedal L. P. R.,Neves M. J.ORCID,Helayël-Neto J. A.

Abstract

Abstract In this paper, we pursue the investigation of a generic non-linear extension of axionic electrodynamics in a Carroll-Field-Jackiw (CFJ) scenario that implements Lorentz-symmetry violation (LSV). The model we inspect consists of an arbitrary non-linear electrodynamic action coupled to the axion field in presence of an anisotropy four-vector that realizes the breaking of Lorentz symmetry under the particle point of view. For the sake of our considerations, the non-linear electromagnetic field is expanded around a constant and uniform magnetic background up to second order in the propagating photon field. The focus of our attention is the study of the material properties of the vacuum in the particular case of a space-like CFJ 4-vector. The dispersion relations associated to the plane wave solutions are explicitly worked out in two situations: the magnetic background perpendicular and parallel to the wave direction. We extend these results to consider the analysis of the birefringence phenomenon in presence of non-linearity, the axion and the LSV manifested through the spatial anisotropy. Three specific proposals of non-linear electrodynamics are contemplated: Euler-Heisenberg (EH), Born-Infeld (BI) and the Modified Maxwell electrodynamics (ModMax). Throughout the paper, we shall justify why we follow the unusual path of connecting, in a single Lagrangian density, three pieces of physics beyond the Standard Model, namely, non-linearity, axions and LSV. We anticipate that we shall not be claiming that the simultaneous introduction of these three topics beyond the Standard Model will bring new insights or clues for the efforts to detect axions or to constrain parameters associate to both non-linear electrodynamics and LSV physics. Our true goal is to actually inspect and describe how axionic, non-linear and LSV effects interfere with one another whenever physical entities like group velocity, refraction indices, birefringence and effective masses of physical excitations are computed in presence of an external constant and homogeneous magnetic field.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3