The deep learning applications in IoT-based bio- and medical informatics: a systematic literature review

Author:

Amiri Zahra,Heidari Arash,Navimipour Nima JafariORCID,Esmaeilpour Mansour,Yazdani Yalda

Abstract

AbstractNowadays, machine learning (ML) has attained a high level of achievement in many contexts. Considering the significance of ML in medical and bioinformatics owing to its accuracy, many investigators discussed multiple solutions for developing the function of medical and bioinformatics challenges using deep learning (DL) techniques. The importance of DL in Internet of Things (IoT)-based bio- and medical informatics lies in its ability to analyze and interpret large amounts of complex and diverse data in real time, providing insights that can improve healthcare outcomes and increase efficiency in the healthcare industry. Several applications of DL in IoT-based bio- and medical informatics include diagnosis, treatment recommendation, clinical decision support, image analysis, wearable monitoring, and drug discovery. The review aims to comprehensively evaluate and synthesize the existing body of the literature on applying deep learning in the intersection of the IoT with bio- and medical informatics. In this paper, we categorized the most cutting-edge DL solutions for medical and bioinformatics issues into five categories based on the DL technique utilized: convolutional neural network, recurrent neural network, generative adversarial network, multilayer perception, and hybrid methods. A systematic literature review was applied to study each one in terms of effective properties, like the main idea, benefits, drawbacks, methods, simulation environment, and datasets. After that, cutting-edge research on DL approaches and applications for bioinformatics concerns was emphasized. In addition, several challenges that contributed to DL implementation for medical and bioinformatics have been addressed, which are predicted to motivate more studies to develop medical and bioinformatics research progressively. According to the findings, most articles are evaluated using features like accuracy, sensitivity, specificity, F-score, latency, adaptability, and scalability.

Funder

Kadir Has University

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3